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Viruses and other cellular cargo that lack locomotion must rely on diffusion and cellular transport systems
to navigate through a biological cell. Indeed, advances in single particle tracking have revealed that viral
motion alternates between (a) diffusion in the cytoplasm and (b) active transport along microtubules. This
intermittency makes quantitative analysis of trajectories difficult. Therefore, the purpose of this paper is
to construct mathematical methods to approximate intermittent dynamics by effective stochastic differential
equations. The coarse-graining method that we develop is more accurate than existing techniques and applicable
to a wide range of intermittent transport models. In particular, we apply our method to two- and three-dimensional
cell geometries (disk, sphere, and cylinder) and demonstrate its accuracy. In addition to these specific applications,
we also explain our method in full generality for use on future intermittent models.
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I. INTRODUCTION

Intracellular transport of cargo (macromolecules and or-
ganelles) is fundamental to cellular function. Indeed, many
diseases are associated with defects in intracellular transport
[1]. In addition, trafficking through the cytoplasm is a crucial
step in viral and nonviral mediated gene transfer [2–4]. In order
to infect and multiply inside a host cell, viruses must travel
through the cytoplasm to the nucleus, and newly formed viral
progeny must travel back this route to exit the cell.

Lacking locomotion, viruses and other cellular cargo must
rely on diffusion and existing cellular transport systems to
maneuver through a biological cell. Advances in live cell
imaging and single particle tracking have revealed the complex
nature of viral motion. Viruses alternate between epochs of
(a) diffusion in the cytoplasm and (b) active transport along
microtubules [5–7]. This intermittency makes quantitative
analysis of trajectories difficult.

Therefore, we seek to approximate the intermittent dynam-
ics by some simpler effective dynamics. In this paper, we
answer the following question: given information about the
cell and the cargo (cellular and microtubular geometry, cargo
dynamics in cytoplasm, cargo dynamics on microtubules,
number of microtubules, etc.), how can we find an effective
stochastic differential equation (SDE) to approximate the
intermittent cargo motion? Put another way, we show how
to choose two parameters (the drift and diffusion coefficient in
an SDE) that encapsulate the full intermittent dynamics.

Using Monte Carlo simulations, we verify the accuracy of
our methods by showing that the probability distributions of
random variables stemming from our effective SDE match the
probability distributions of random variables stemming from
the full intermittent process. In particular, we compare the
distributions of first passage times (FPTs) and the distributions
of the spatial position of the process at a sequence of times. We
note that this is a more stringent test of accuracy than previous
methods which sought to match only means of FPTs and not
distributions of FPTs [8,9].
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Given its biological and medical importance, intracellular
transport has garnered mathematical attention for decades
[10]. Recently, mathematicians have developed techniques to
compute the efficiency of the delivery of plasmids or viral
DNAs from the cell membrane to nuclear pores [11–13]. These
techniques, however, take as their starting point a single SDE
describing cargo motion, not the full intermittent dynamics.
Our method for reducing intermittent dynamics to an SDE is
therefore well motivated. Existing methods for this reduction
exist, but they apply only to two-dimensional cells [8,9].
Our method applies to three-dimensional cells (Secs. IV and
V) and is in fact more accurate than previous methods for
two-dimensional cells (Sec. II).

The paper is organized as follows. We begin in Sec. II by
describing a well-known model of intermittent intracellular
transport in a two-dimensional cell that was first formulated
in Ref. [8]. In Refs. [8,9], the authors derive effective SDEs
to approximate this intermittent model, and so we compare
our coarse-graining method to theirs. We give our general
coarse-graining method in Sec. III and demonstrate its wide
applicability in Secs. IV and V by applying it to models of
intermittent intracellular transport in spherical and cylindrical
cellular geometries, respectively. In all cases, Monte Carlo
simulations show that our effective SDE closely resembles the
intermittent dynamics. We conclude with a brief summary.

II. TWO-DIMENSIONAL CELL—DISK

We begin by applying our coarse-graining method to a
well-known model of virus trafficking in a two-dimensional
cell that was formulated in Ref. [8] and further studied in
Refs. [9,12]. In this model, the cell is a two-dimensional disk
of radius R with its nucleus located in a concentric disk of
smaller radius δ < R (this cellular geometry would apply,
for example, to flat skin fibroblast culture cells [14]). There
are N microtubules radiating from the nucleus to the cellular
membrane that partition the cytoplasm into N wedges of equal
angular width � = 2π/N (see Fig. 1). By this symmetry, it is
enough to consider the viral motion restricted to one of these
N wedges:

C := {(r,θ ) : δ � r � R and θ ∈ [0,�]}.

1539-3755/2015/92(4)/042709(8) 042709-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.042709


SEAN D. LAWLEY, MARIE TUFT, AND HEATHER A. BROOKS PHYSICAL REVIEW E 92, 042709 (2015)

FIG. 1. Two-dimensional cell model with cell radius R, nucleus
radius δ, and N = 5 microtubules. Each wedge has angular width
� = 2π/N .

A virus enters C at the cellular membrane at radius R at an
angle uniformly distributed in [0,�]. The virus then moves by
pure diffusion with diffusion coefficient D in the cytoplasm
(with a reflecting boundary condition at the cellular membrane
at radius R) until it either hits the nucleus at radius δ or hits a
microtubule at angle 0 or �. If the virus ever reaches radius δ,
then it is immediately absorbed. If the virus hits a microtubule,
then it moves along the microtubule toward the nucleus with
constant velocity V for an exponentially distributed amount
of time. After this exponential time, the virus is released back
into the cytoplasm at its current radius at an angle uniformly
distributed in [0,�] and begins to diffuse again (see Fig. 2).

The virus continues to alternate between epochs of diffusion
and directed motion along microtubules until it reaches the

FIG. 2. (Color online) Sample trajectory of intermittent dynam-
ics within a single wedge of two-dimensional cell model. Here, the
virus diffuses in the cytoplasm from radius r1 and angle θ1 until it
hits the microtubule at radius r2 and angle 0. It then moves along the
microtubule at velocity V for an exponentially distributed time t2.
Then, it is released back into the cytoplasm at radius r3 = r2 − V t2
and at an angle θ3 uniformly distributed in [0,�]. The process
continues until the virus is absorbed at radius δ.

nucleus. If we write the position of the virus at time t in polar
coordinates (rt ,θt ) ∈ C, then viral motion is described by

drt =
{−V dt on a microtubule

(D/rt )dt + √
2D dWr

t in cytoplasm,

dθt =
{

0 on a microtubule
(
√

2D/rt )dWθ
t in cytoplasm,

(2.1)

where Wr
t and Wθ

t are independent standard Brownian
motions.

The intermittent nature of this process makes it difficult
to analyze. Thus, much effort has gone into finding effective
coarse-grained SDE approximations. In Sec. II A below, we
outline this previous work and identify aspects that we seek
to improve. We then give our coarse-grained SDE in Sec. II B
and make comparisons in Sec. II C.

A. Previous coarse-grained dynamics by Lagache and Holcman

In Refs. [8,9], the authors use sophisticated asymptotic
analysis of partial differential equations to derive a radial drift
B(r) in terms of model parameters in order to approximate the
intermittent dynamics in Eq. (2.1) by an effective radial SDE

drt = [D/rt − B(rt )] dt +
√

2D dWt . (2.2)

In Ref. [8] the derived drift B(r) is constant in r , whereas in
Ref. [9] it a function of r . In both papers, the authors take the
effective angular SDE to be the cytoplasmic angular SDE from
the intermittent dynamics, namely,

dθt = (
√

2D/rt ) dWθ
t .

In both Refs. [8,9], the approximation in Eq. (2.2) is justified
by two criteria: (a) the mean first passage time (MFPT) to
the nucleus for the effective dynamics in Eq. (2.2) closely
matches the MFPT to the nucleus for the intermittent dynamics
in Eq. (2.1) if � � 1, and (b) if one imposes reflecting
boundary conditions at the nucleus, then the steady state radial
distribution of the effective dynamics in Eq. (2.2) resembles
the steady state distribution of the intermittent dynamics in
Eq. (2.1) for certain intermediate values of �.

The FPT to the nucleus is closely related to the probability
and timing of viral infection and is thus a key biological
quantity. Therefore, matching the FPTs for the two processes is
a good criteria for justifying the coarse-grained SDE, and so we
agree in principle with criteria (a). However, while the MFPTs
for Eqs. (2.1) and (2.2) match closely, we discover below that
the FPT distributions for the two processes are quite different.
We thus seek an effective SDE whose FPT distribution matches
that of the intermittent dynamics in Eq. (2.1). Furthermore, we
want the effective SDE to be valid for a larger range of �. We
see below that our effective SDE accomplishes both of these.

In addition, the criteria (b) of matching steady state
radial distributions could be sharpened since steady state
distributions contain (in principle) little information about
time scale. As a trivial example, consider a diffusing particle
in a one-dimensional interval with reflecting boundaries. The
steady state distribution (uniform) is completely independent
of the diffusion coefficient, but the dynamics are of course
highly dependent on the diffusion coefficient. Instead of
seeking to match the steady state radial distribution (which
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is essentially the radial distribution at infinite time), we match
the radial distribution at a sequence of finite times.

Furthermore, the fact that criteria (b) can only hold in
certain intermediate parameter regimes is made clear by the
form of the effective SDE in Eq. (2.2). Notice that the diffusion
term in Eq. (2.2) is the same as the cytoplasmic diffusion
term for the radial dynamics in Eq. (2.1). Thus, the effective
SDE (2.2) always has this same amount of noise. However,
this effective SDE was derived under the assumption that
� � 1, and it is clear that the intermittent process becomes
deterministic in this limit because the proportion of time
that the virus is bound to a microtubule converges to one.
Thus, the steady state radial distribution for the intermittent
process in this limit must be a delta function at the nucleus,
and so the steady state radial distributions of Eqs. (2.1) and
(2.2) cannot match in this limit. We see below that assuming
the diffusion term in the effective SDE is the same as the
cytoplasmic diffusion term causes other problems. We thus
allow the diffusion term in our effective SDE to depend on �.

B. New coarse-grained dynamics

A systematic exposition of our general coarse-graining
method is given below in Sec. III, but we first illustrate our
method for the two-dimensional cell model described above.
We approximate the intermittent dynamics of Eq. (2.1) by an
effective radial SDE that is a mixture of the cytoplasmic and
microtubular dynamics

drt = {[D/rt )(1 − p(rt )] − Vp(rt )}dt

+
√

2D[1 − p(rt )] dWt, (2.3)

where p(r) is related to the probability that the virus is on a
microtubule given that it is at radius r .

A precise definition of p(r) is given in Sec. III, but first
consider the following intuitive derivation. By assumption,
each time the virus hits a microtubule, it attaches to the
microtubule for an exponential amount of time (say with mean
μ). After this exponential time, the virus is released back
into the cytoplasm at its current radius (call it r) at an angle
uniformly distributed in [0,�]. Ignoring radial motion, we
approximate the amount of time it takes the virus to reach a
microtubule again by

T (r) := 1

�

∫ �

0
τ (θ ; r)dθ, (2.4)

where τ (θ ; r) satisfies boundary value problem

D

r2

d

dθ
τ (θ ; r) = −1, τ (0; r) = 0 = τ (�; r). (2.5)

For a particle diffusing in the interval [0,�] with diffusion
coefficient D/r2, the quantity T (r) is the MFPT to reach
either 0 or �, given a uniform initial position [15]. A quick
calculation yields T (r) = �2r2/(12D).

Setting p(r) as the proportion of time on a microtubule

p(r) = μ

μ + T (r)
,

our effective SDE in Eq. (2.3) becomes

drt =
(

D

rt

T (rt )

μ + T (rt )
− V

μ

μ + T (rt )

)
dt

×
√

2D
T (rt )

μ + T (rt )
dWt . (2.6)

C. Comparison

We now compare our effective SDE in Eq. (2.6) to both
the original intermittent process in Eq. (2.1) and the effective
SDE in Eq. (2.2) derived in Ref. [9]. In keeping with parameter
values used in Refs. [8,9] (taken from experimental papers
[5,16–18]), we take the radius of the cell to be R = 20 μm,
the radius of the nucleus to be δ = 5 μm, the cytoplasmic
diffusion coefficient to be D = 1.3 μm2 s−1, the velocity on
microtubules to be V = 0.7 μm s−1, and the average time on
a microtubule to be μ = 1 s.

Figure 3 compares the distributions of the FPT to
the nucleus for various numbers of microtubules (N =
12,24,48,96). These values of N are in keeping with [8,9]
which used N between 12 and 48. Figure 4 compares the
distributions of the radial positions at times t = 5,10,15 for
N = 48. That is, it compares the distribution of rt for (2.1),
(2.6), and (2.2) at t = 5,10,15. The standard Euler-Maruyama
method is used to simulate the cytoplasmic motion in the
intermittent process as well as the effective SDEs. It is clear
from these figures that our SDE in Eq. (2.6) approximates the
intermittent process more closely than the SDE in Eq. (2.2)
derived in Ref. [9].

III. GENERAL METHOD

Before considering higher dimensional and more compli-
cated cellular geometries in Secs. IV and V, we first give
our general coarse-graining method. Suppose one is given a
stochastic process {(ρt ,φt )}t�0 ∈ R × Rd . [We use the (ρ,φ)
notation for analogy to Sec. II above, but notice that (ρ,φ)
is not assumed to be a radius and angle as it takes values in
R × Rd .]

Let the sets {Ak}nk=1 ⊂ Rd partition the state space of φt

and suppose the dynamics of ρt depend only on which Ak the
process φt is in and not on the details of φt . That is, suppose
the dynamics of ρt are governed by the SDE

dρt =
(

n∑
k=1

bk(ρt )1φt∈Ak

)
dt +

(
n∑

k=1

σk(ρt )1φt∈Ak

)
dWt,

(3.1)

where 1{·} denotes the indicator function, for some given
functions {bk(ρ)}nk=1 and {σk(ρ)}nk=1. [In the case of the two-
dimensional cell considered in Sec. II above, ρt = rt , φt = θt ,
b1(ρ) = V , σ1(ρ) = 0, b2(ρ) = D/ρ, and σ2(ρ) = √

2D, with
partitioning sets A1 = {0,�} and A2 = (0,�).]

The dynamics of φt may be complicated and may depend
on ρt , but we suppose that which set Ak the process φt is in is
approximately Markovian. That is, we suppose there exists a
continuous-time Markov jump process Jt (with instantaneous

042709-3



SEAN D. LAWLEY, MARIE TUFT, AND HEATHER A. BROOKS PHYSICAL REVIEW E 92, 042709 (2015)

0 90 180 270
0

0.5

1

1.5

×10−2

FPT

intermittent
new coarse-grain
previous coarse-grain

0 40 80 120
0

1

2

3

4
×10−2

FPT

0 25 50 75
0

2

4

6

8
×10−2

FPT
0 30 60

0

0.05

0.1

0.15

FPT

FIG. 3. (Color online) Empirical distributions of FPT to nucleus of 2D cell for intermittent in Eq. (2.1), our new coarse grain in Eq. (2.6),
and the previous coarse grain in Eq. (2.2) derived in Ref. [9] for N = 12 (top left), N = 24 (top right), N = 48 (bottom left), and N = 96
(bottom right). Each distribution is calculated from 104 trials. Parameters are given in Sec. II C.

jump rates which may depend on ρt ) so that

Jt ≈
∑
k=1

k1φt∈Ak
.

[In the case of the two-dimensional cell considered in Sec. II
above, Jt jumps from state 1 to 2 with rate 1/μ and from 2 to
1 with rate 1/T (ρt ).]

Under this assumption, we approximate ρt by

dρ̃t =
(

n∑
k=1

bk(ρ̃t )1Jt=k

)
dt +

(
n∑

k=1

σk(ρ̃t )1Jt=k

)
dWt .
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FIG. 4. (Color online) Empirical distribution of radial position
for 2D cell for intermittent in Eq. (2.1), our new coarse grain in
Eq. (2.6), and the previous coarse grain in Eq. (2.2) derived in
Ref. [9] at times t = 5,10,15. Thicker lines correspond to larger
times. Each distribution is calculated from 105 trials and we take
N = 48. Parameters are given in Sec. II C.

This process ρ̃t is a hybrid switching diffusion [19]. If the
Jt dynamics are much faster than the ρ̃t dynamics, then one
can approximate ρ̃t to first order by the adiabatic limit (see
Ref. [19], Chap. 12)

dρ̄t =
(

n∑
k=1

bk(ρ̄t )pk(ρ̄t )

)
dt +

(
n∑

k=1

√
σ 2

k (ρ̄t )pk(ρ̄t )

)
dWt,

(3.2)

where {pk(ρ)}nk=1 is the quasi steady state distribution of Jt .
This time scale separation is the key assumption. The SDE in
Eq (3.2) is our coarse-grained effective SDE approximation to
Eq. (3.1).

IV. THREE-DIMENSIONAL CELL—SPHERE

In this section, we first formulate a mathematical model of
intermittent virus trafficking in a three-dimensional spherical
cell and then apply our general coarse-graining method of
Sec. III to derive an effective SDE describing viral motion.

In this intermittent model, the cell is a sphere of radius R

with its nucleus located in a concentric sphere of smaller radius
δ < R. The position of the virus is restricted to the cytoplasm

C := {x ∈ R3 : |x| � δ and |x| � R}.

There are N microtubules, each of radius ε, that radiate from
the nucleus at radius δ to the cellular membrane at radius R

(see Fig. 5). That is, for N points {ck}Nk=1 on the unit sphere,
we define the microtubules {mk}Nk=1 to be the sets

mk = {x ∈ R3 : |x − rck| � ε for some r ∈ [δ,R]}.
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FIG. 5. (Color online) Three-dimensional spherical cell model
with cell radius R, nucleus radius δ, and N = 7 microtubules with
radius ε. The N microtubules radiate from locations on the nucleus
which are randomly drawn from a uniform distribution.

We suppose that the N points {ck}Nk=1 on the surface of
the unit sphere are randomly placed according to a uniform
distribution.

A virus enters the cell at the cellular membrane at a
position uniformly distributed on the surface of the sphere
of radius R. The virus then moves by pure diffusion with
diffusion coefficient D in the three-dimensional cytoplasm
(with a reflecting boundary condition at the cellular membrane
at radius R) until it either hits the nucleus at radius δ or hits
one of the N microtubules. If the virus ever reaches radius δ,
then it is immediately absorbed. If the virus hits a microtubule,
then it moves along the microtubule toward the nucleus with
constant velocity V for an exponentially distributed amount
of time. After this exponential time, the virus is released back
into the cytoplasm at its current radius at a position uniformly
distributed on the surface of the sphere with that radius,
and then the virus begins to diffuse in the three-dimensional
cytoplasm again.

The virus continues to alternate between epochs of diffusion
and directed motion along microtubules until it reaches the
nucleus. If we let rt ∈ [δ,R] denote the radial position of the
virus at time t , then the radial viral motion is described by

drt =
{−V dt on a microtubule

(2D/rt )dt + √
2D dWt in cytoplasm.

(4.1)

A. Coarse-grained spherical dynamics

To derive an effective SDE for the intermittent dynamics in
Eq. (4.1), we cast the problem in the framework and notation
of Sec. III. Let rt denote the radial position of the virus and let
xt ∈ R3 denote its Cartesian coordinates. Define the (ρt ,φt ) of
Sec. III to be

(ρt ,φt ) = (rt ,xt ) ∈ R × R3.

The partitioning sets become

A1 = ∪N
k=1mk and A2 = R3\A1.

The drift and diffusion terms become

b1(ρ) = −V, σ1(ρ) = 0,

b2(ρ) = 2D/ρ, σ2(ρ) =
√

2D.

In order to apply the method of Sec. III, it remains to
approximate the process

1φt∈A1 + 21φt∈A2

by a continuous-time Markov jump process Jt on {1,2}.
Since the virus is assumed to attach to a microtubule for an
exponential amount of time (say with mean μ), we suppose Jt

jumps from state 1 to 2 with rate 1/μ.
Choosing the jump rate from state 2 to 1 is more difficult as

it represents the rate at which a virus finds a microtubule. We
choose it to be the inverse of the MFPT of a particle diffusing
on the surface of a sphere to one of the N microtubules.

More precisely, let S denote the surface of the unit sphere
and let η(ρ) ⊂ S denote the set

η(ρ) := {x ∈ S : |x − ck| � ε/ρ for some k = 1, . . . ,N}.
Suppose τ (x; ρ) : S → [0,∞) satisfies the following boundary
value problem:

�τ (x; ρ) = −ρ2/D, x ∈ S\η(ρ),

τ (x; ρ) = 0, x ∈ ∂η(ρ).

For a particle diffusing with diffusion coefficient D on the
surface of a sphere of radius ρ, the quantity

1

4π

∫
S

τ (x; ρ) dx (4.2)

is the MFPT to hit one of N traps of radius ε centered at
positions {ρck}Nk=1, assuming the particle is initially distributed
uniformly. Coombs, Straube, and Ward provide the following
asymptotic approximation of Eq. (4.2) in the small ε limit [20]:

T (ρ) := ρ2

D

[
− 2

N
ln

(
ε

ρ

)
+ 2 ln 2 − 1 − 4

N2
�

]
,

where

� =
N∑

k=1

N∑
j>k

ln |ck − cj |.

If we choose the jump rate of Jt from state 2 to 1 to be 1/T (ρ),
then the quasi steady state distribution of Jt is given by

p1(ρ) = μ

μ + T (ρ)
,

with p2(ρ) = 1 − p1(ρ).
Thus, using Eq. (3.2) in Sec. III, we approximate the

intermittent dynamics in Eq. (4.1) by the following effective
SDE:

dρt =
(

2D

ρt

T (ρt )

μ + T (ρt )
− V

μ

μ + T (ρt )

)
dt

+
√

2D
T (ρt )

μ + T (ρt )
dWt . (4.3)
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FIG. 6. (Color online) 3D spherical cell: comparison of intermit-
tent in Eq. (4.1) and our coarse grain in Eq. (4.3). Each distribution
is calculated from 104 trials and parameters are given in Sec. IV B.
Top: Empirical distributions of FPT to nucleus. Bottom: Empirical
distribution of radial position at times t = 5,10,15. Thicker lines
correspond to larger times.

B. Comparison

We now compare the 3D intermittent dynamics of Eq. (4.1)
to our effective SDE in Eq. (4.3).

In keeping with the parameters used in Sec. II, we take
the radius of the cell to be R = 20 μm, the radius of the
nucleus to be δ = 5 μm, the cytoplasmic diffusion coefficient
to be D = 1.3 μm2 s−1, the velocity on microtubules to be
V = 0.7 μm s−1, and the average time on a microtubule to
be μ = 1 s. A typical eukaryotic cell large aster has between
600 and 1000 microtubules [16], and so we take N = 1000.
A microtubule has approximate diameter 0.03 μm [21], an
Adeno associated virus has approximate diameter 0.03 μm
[5], and the interaction range between microtubules and
molecular motors is approximately 0.05 μm [17]. Thus, we
take ε = 0.1 μm. The standard Euler-Maruyama method is
used to simulate the cytoplasmic motion in the intermittent
process as well as the effective SDE.

The top of Fig. 6 compares the distributions of the FPT to the
nucleus and the bottom compares the distributions of the radial
positions at a sequence of times. That is, the bottom compares
the distribution of rt for Eqs. (4.1) and (4.3) at t = 5,10,15. In
both cases, the coarse-grained SDE closely approximates the
full intermittent dynamics.

V. THREE-DIMENSIONAL CELL—CYLINDER

In this section, we formulate a mathematical model of
virus trafficking in a three-dimensional cylindrical cell and
apply our general coarse-graining method of Sec. III to derive
an effective SDE describing viral motion. This cylindrical

geometry is well motivated as many viruses rely on trafficking
though axons and dendrites which resemble long cylinders.

Indeed, similar mathematical models of axonal transport
have a long and rich history. Following experimental work in
the 1970s and 1980s that showed radiolabeled amino acids
progressing through axons as slowly spreading waves, Reed
and Blum developed PDE models of axonal transport that
remarkably exhibited this same behavior [22–24]. These PDE
models have been generalized and have generated lots of
rigorous mathematical analysis [25–28]. In addition to PDE
models, probabilistic models (in both discrete and continuous
time) have been constructed that also demonstrate this same
behavior [29–32].

These previous models begin with two simplifying reduc-
tions: (a) the cell is one-dimensional, and (b) the rate at
which a virus (or other cargo) attaches to a microtubule is
some given exponential rate. Our intermittent model makes
neither reduction; the cell’s three-dimensional geometry is
included, and the time when a virus attaches to a microtubule
is determined by the random time that a virus diffusing in
the three-dimensional cytoplasm hits a microtubule. However,
the coarse-grained SDE that we derive in Sec. V A does
make use of these reductions. We show in Sec. V B that this
SDE compares favorably with the full intermittent model, and
therefore verify the efficacy of these reductions and show how
to make them. That is, we show how to choose the pair of
one-dimensional parameters (drift and diffusion coefficient)
in order to encapsulate the full three-dimensional model.

We now define the intermittent dynamics. In this model, the
cell is a cylinder of length L and radius R:

C := {(x,y,z) ∈ R3 : 0 � x � L and y2 + z2 � R2}.
There are N microtubules, each of radius ε and length L, that
run parallel to the principal axis of the cell (see Fig. 7). More
precisely, for N points {(yk,zk)}Nk=1 on the disk of radius R in
the (y,z) plane, we define the microtubules {mk}Nk=1 to be the
sets

mk = {(x,y,z) ∈ R3 : 0 � x � L, |(y,z) − (yk,zk)| � ε}.

We suppose the N points {(yk,zk)}Nk=1 are randomly placed on
the disk of radius R according to a uniform distribution.

FIG. 7. Three-dimensional cylindrical (axon) model with cell
radius R, length L, and N = 4 microtubules with radius ε. The
locations of the N microtubules are randomly drawn from a uniform
distribution.
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We suppose that a virus enters the cell at position
(0,y0,z0) ∈ C with (y0,z0) uniformly distributed on the disk
of radius R. The virus then moves by pure diffusion with
diffusion coefficient D in the three-dimensional cytoplasm
with a reflecting boundary condition at the cellular membrane

{(y,z) ∈ R2 : y2 + z2 = R2}
and at the left end of the cell (x = 0), until it either hits the right
end of the cell (x = L) or hits one of the N microtubules. If
the virus reaches x = L, then it is immediately absorbed. If the
virus hits a microtubule, then it moves along the microtubule
with constant velocity V > 0 for an exponentially distributed
amount of time. After this exponential time, the virus is
released back into the cytoplasm at its current x position at
a point in the (y,z) plane uniformly distributed on the disk of
radius R, and then the virus begins to diffuse again.

The virus continues to alternate between epochs of diffusion
and directed motion along microtubules until it reaches x = L.
If we let (xt ,yt ,zt ) ∈ C denote the position of the virus at time
t , then the viral motion in the x direction is described by

dxt =
{
V dt on a microtubule√

2D dWt in cytoplasm.
(5.1)

A. Coarse-grained cylindrical dynamics

To derive an effective SDE for the intermittent dynamics in
Eq. (5.1), we cast the problem in the framework and notation
of Sec. III. Define the (ρt ,φt ) of Sec. III to be

(ρt ,φt ) = (xt ,(yt ,zt )) ∈ C.

The partitioning sets become

A1 = ∪N
k=1mk and A2 = C\A1.

The drift and diffusion terms become

b1(ρ) = V, σ1(ρ) = 0,

b2(ρ) = 0, σ2(ρ) =
√

2D.

In order to apply the method of Sec. III, it remains to
approximate the process

1φt∈A1 + 21φt∈A2

by a continuous-time Markov jump process Jt on {1,2}.
Since the virus is assumed to attach to a microtubule for an
exponential amount of time (say with mean μ), we suppose Jt

jumps from state 1 to state 2 at rate 1/μ.
The jump rate from state 2 to state 1 represents the rate

at which a virus finds a microtubule. We choose it to be the
inverse of the MFPT of a particle diffusing on the disk of radius
R to one of N uniformly distributed circular traps of radius ε.
In the small ε limit, this MFPT is Ref. [9]

T = R2 ln(1/ε)

2ND
.

The quasi steady state distribution of Jt is then given by

p1 = μ

μ + T
and p2 = T

μ + T
.

Thus, using Eq. (3.2) in Sec. III, we approximate the
intermittent dynamics in Eq. (5.1) by the following effective

100 140 180 220
0

2

4

×10−2

FPT

intermittent
coarse-grain

5 10 15
0

0.1

0.2

0.3

0.4

x position

intermittent
coarse-grain

FIG. 8. (Color online) 3D cylindrical cell: comparison of in-
termittent in Eq. (5.1) and our coarse grain in Eq. (5.2). Each
distribution is calculated from 104 trials and parameters are given
in Sec. V B. Top: Empirical distributions of FPT to nucleus. Bottom:
Empirical distribution of x position at times t = 5,10,15. Thicker
lines correspond to larger times.

SDE:

dρt = V
μ

μ + T
dt +

√
2D

T

μ + T
dWt . (5.2)

B. Comparison

We now compare the 3D intermittent dynamics of Eq. (5.1)
to our effective SDE in Eq. (5.2). As above, we take ε =
0.1 μm, D = 1.3 μm2 s−1, V = 0.7 μm s−1, and μ = 1 s.
We take R = 10 μm, L = 100, and N = 700 [33,34]. The
standard Euler-Maruyama method is used to simulate the cyto-
plasmic motion in the intermittent process as well as the
effective SDE.

The top of Fig. 8 compares distributions of the FPT to x = L

and the bottom compares the distributions of the x positions
at a sequence of times. That is, the bottom compares xt in
Eq. (5.1) and ρt in Eq. (5.2) at t = 5,10,15. In both cases, the
coarse-grained SDE closely approximates the full intermittent
dynamics.

VI. SUMMARY AND CONCLUSIONS

In this paper, we developed a method for coarse-graining
intermittent intracellular transport into effective SDEs. We
used Monte Carlo simulations to demonstrate the accuracy
of our method across a variety of cellular geometries. For
comparison and analogy to previous work, we incorporated
various assumptions into the intermittent models (determinis-
tic motion on microtubules, uniform placement in cytoplasm
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after leaving a microtubule, etc.). However, we stress that our
method (as described in Sec. III) is easily applied without
these assumptions. We anticipate our method being used on
future intermittent models and the machinery of Ref. [11]
being applied to our effective SDEs [Eqs. (2.6) and (4.3)]
to estimate the efficiency of viral infection. Additional future
work includes combining our present coarse-grained models of
viral motion with the sequence of biochemical transformations
that viruses undergo during their journey through the cell,

as these are known to affect the probability and timing of
infection [35].
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