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STOCHASTIC SWITCHING IN INFINITE DIMENSIONS WITH
APPLICATIONS TO RANDOM PARABOLIC PDE∗

SEAN D. LAWLEY† , JONATHAN C. MATTINGLY† , AND MICHAEL C. REED†

Abstract. We consider parabolic PDEs with randomly switching boundary conditions. In
order to analyze these random PDEs, we consider more general stochastic hybrid systems and prove
convergence to, and properties of, a stationary distribution. Applying these general results to the
heat equation with randomly switching boundary conditions, we find explicit formulae for various
statistics of the solution and obtain almost sure results about its regularity and structure. These
results are of particular interest for biological applications as well as for their significant departure
from behavior seen in PDEs forced by disparate Gaussian noise. Our general results also have
applications to other types of stochastic hybrid systems, such as ODEs with randomly switching
right-hand sides.
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1. Introduction. The primary motivation for this paper is to study parabolic
partial differential equations (PDEs) with randomly switching boundary conditions.
More precisely, given an elliptic differential operator, L, on a domainD ⊂ R

d, we want
to study the stochastic process u(t, x) that solves ∂tu = Lu in D subject to boundary
conditions that switch at random times between two given boundary conditions.

This type of random PDE is an example of a stochastic hybrid system. The
word “hybrid” is used because these stochastic processes involve both continuous
dynamics and discrete events. In this example, the continuous dynamics are the
different boundary value problems corresponding to the different boundary conditions
for the given PDE, and the discrete events are when the boundary condition switches.

In general, a stochastic hybrid system is a continuous-time stochastic process with
two components: a continuous component (Xt)t≥0 and a jump component (Jt)t≥0.
The jump component, Jt, is a jump process on a finite set, and for each element of its
state space we assign some continuous dynamics to Xt. In between jumps of Jt, the
component Xt evolves according to the dynamics associated with the current state
of Jt. When Jt jumps, the component Xt switches to follow the dynamics associated
with the new state of Jt.

An ordinary differential equation (ODE) with a switching right-hand side is the
type of stochastic hybrid system that is most commonly used in applications. Such
ODE switching systems have been used extensively in applied areas such as control
theory, computer science, and engineering (for example, [46], [8], [3], and [31]). More
recently, these systems have been used in diverse areas of biology (for example, molec-
ular biology [10], [37], [9], ecology [47], and epidemiology [21]). Furthermore, such

∗Received by the editors July 9, 2014; accepted for publication (in revised form) June 5, 2015;
published electronically August 11, 2015.

http://www.siam.org/journals/sima/47-4/97671.html
†Mathematics Department, Duke University, Durham, NC 27708 (lawley@math.duke.edu, jonm@

math.duke.edu, reed@math.duke.edu). The research of the first author was supported in part by NSF
grant DMS-0943760. The research of the second author was supported in part by NSF grant DMS-
0854879. The research of the third author was supported in part by NSF grants EF-1038593 and
DMS-0943760 and NIH grant R01 ES019876.

3035

http://www.siam.org/journals/sima/47-4/97671.html
mailto:lawley@math.duke.edu
mailto:jonm@math.duke.edu
mailto:jonm@math.duke.edu
mailto:reed@math.duke.edu


3036 S. D. LAWLEY, J. C. MATTINGLY, AND M. C. REED

ODE switching systems have also recently been the subject of much mathematical
study [29], [12], [6], [5], [2], [24], [25], [4].

Comparatively, stochastic hybrid systems stemming from PDEs have received
little attention. While deterministic PDEs coupled to random boundary conditions
have been studied, the random boundary conditions have typically been assumed to
involve some Gaussian noise forcing [1], [18], [42], [41], [15]. The randomness enters
our PDE system in a fundamentally different way than in Stochastic PDEs which
are driven by additive space-time white noise (or even spatially smoother Gaussian
fields). There, the fine scales are often asymptotically independent of each other [35],
[36]. Here, there is a single piece of randomness which dictates the fine structure.
Hence, the fine scales, though not asymptotically deterministic, are asymptotically
perfectly correlated. (See Proposition 4.5 for more details.)

We were led to study such random PDEs by various biological applications. One
application is to insect respiration. Essentially all insects breathe via a network of
tubes that allow oxygen and carbon dioxide to diffuse to and from their cells [44]. Air
enters and exits this network through valves (called spiracles) in the exoskeleton, which
regulate air flow by opening and closing quite irregularly in time. This leads naturally
to the following model problem. Let u(x, t) satisfy the heat equation ∂tu = D∂2

xu
on [0, L]. x = 0 corresponds to tissue where the oxygen is absorbed, so u(0, t) = 0.
x = L corresponds to a spiracle, so there the boundary condition switches between
∂xu(L, t) = 0 (spiracle closed) and u(L, t) = b > 0 (spiracle open). Suppose that
the boundary conditions switch at exponential rates r0 and r1. We would like to
calculate the long-term statistics of the solution u(t, x); in particular, we would would
like to know how the oxygen absorption at the tissue, ∂xu(0, t), depends on D and
the switching rates. This model problem is fully developed in section 4.3.

A second such problem arises in understanding the concentration of neurotrans-
mitters in the extracellular space in the brain. Imagine that the axonal projections
from a nucleus of cells make a dense, random set of terminals in projection region, P ,
in the brain. For example, there is a dense set of terminals of serotonin neurons in
the striatum that come from the dorsal raphe nucleus [22]. Action potentials arrive
as a Poisson process at a terminal, and when they do, neurotransmitter is released
at a high rate into the extracellular space for a very short amount of time. At other
times, the neurotransmitter is absorbed back into the terminal. We would like to cal-
culate the long-term statistics of the neurotransmitter concentration in the exterior
domain that consists of P with the terminal volumes removed. On the large scale, this
is a homogenization problem. But to solve it, one first has to understand the local
switching problem. The solution of the heat equation in the exterior domain, u(x, t),
satisfies ∂nu(x, t) = c >> 0 for a short time after an action potential has arrived, and
u(x, t) = 0 at other times, for points x on the boundary of a terminal. Thus, as in the
previous paragraph, we are switching between Dirichlet and Neuman boundary con-
ditions at random times. These questions are extremely important for neuroscience
because it is now known that some groups of neurons affect distant locations of the
brain by firing more or less and thus changing the ambient concentration of the neu-
rotransmitter in the extracellular space in the distant region, a phenomenon called
“volume transmission” [38], [23]. An analysis of this problem, using the techniques
developed in this paper, will be the subject of future work.

Our paper is organized as follows. In section 2, we consider more general stochas-
tic hybrid systems from the viewpoint of iterated random functions. (See [16] or [27],
[28] for a review of iterated random functions.) Assuming that the continuous dy-
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namics are contracting on average, we prove convergence to a stationary distribution
and describe the structure and properties of this distribution. In section 3, we apply
these general results to the random PDE problems described above. We show that the
mean of the process satisfies the PDE and that the mean of the stationary distribution
satisfies the time homogeneous version of the PDE. Then in section 4, we apply our
results from sections 2 and 3 to the one-dimensional heat equation with randomly
switching boundary conditions. We find explicit formulae for various statistics of the
solution and obtain almost sure results about its regularity and structure. There,
we also show that our general results have applications to other types of stochastic
hybrid systems, such as ODEs with randomly switching right-hand sides. Finally, we
end section 4 by explaining that our results can be applied to the question in insect
physiology mentioned above.

We conclude this introduction by giving two examples that motivated our study.
We return to these examples in section 4. Consider the heat equation on the interval
[0, L] with an absorbing boundary condition at 0 and a randomly switching boundary
condition at L. Let the switching be controlled by a Markov jump process, Jt, on
{0, 1} with r0 and r1 the respective rates for leaving states 0 and 1. In the following
two examples, we consider different possible boundary conditions at L.

Example 1. Suppose the boundary condition at L switches between an inhomoge-
neous Dirichlet condition and a Neumann no flux condition. More precisely, consider
the stochastic process u(t, x) ∈ L2[0, L] that solves

∂tu = DΔu in (0, L),

u(0, t) = 0 and Jtux(L, t) + (1− Jt)(u(L, t)− b) = 0.

We show in section 4.1 that as t → ∞, the process u(t, x) converges in distribution
to an L2[0, L]-valued random variable whose expectation is a linear function. Letting
γ = L

√
(r0 + r1)/D and ρ = r0/r1, we will show that the slope of this function is

(
1 +

ρ

γ
tanh(γ)

)−1
b

L
.

Example 2. Suppose the boundary condition at L switches between an inhomo-
geneous Dirichlet condition and a homogeneous Dirichlet condition. More precisely,
consider the stochastic process u(t, x) ∈ L2[0, L] that solves

∂tu = DΔu in (0, L),

u(0, t) = 0 and Jtu(L, t) + (1− Jt)(u(L, t)− b) = 0.

We show in section 4.2 that as t → ∞, the process u(t, x) converges in distribution
to an L2[0, L]-valued random variable whose expectation is a linear function. Letting
p = r0/(r0 + r1), we will show that the slope of this function is

(1− p)
b

L
.

The expectations for Examples 1 and 2 are quite different. In Example 2, the
expectation is the solution to the time homogenous PDE with boundary conditions
given by the average of the two possible boundary conditions. We will see in sec-
tion 4.2 that this simple result holds because the process switches between boundary
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conditions of the same type and the corresponding semigroups commute. Moreover,
because the boundary conditions are the same type, we will be able to compute in-
dividual and joint statistics of the Fourier coefficients of the stationary solution and
show that this solution almost surely has a very specific structure and regularity.

In both examples, the expectation is a linear function with slope given by b/L
multiplied by a factor less than one. While in Example 2 this factor is simply the
proportion of time the boundary condition is inhomogeneous, the factor in Example 1
is an unexpected expression involving the hyperbolic tangent. Furthermore, while the
factor in Example 1 still depends on the proportion of time the boundary condition is
inhomogeneous, it also depends on how often the boundary conditions switch. Observe
that if we keep this proportion fixed by fixing the ratio r0/r1 and take the frequency
of switches small by letting r0 + r1 go to 0, then the slope for Example 1 approaches
the same slope as in the Example 2. And if we keep the ratio r0/r1 fixed but let the
r0 + r1 go to infinity, then the slope for Example 1 approaches b/L. Some biological
implications of this result are discussed in section 4.3.

2. Abstract setting. We first consider stochastic hybrid systems in a separable
Banach space X . Under certain contractivity assumptions, we prove that the process
converges in distribution at large time and we show that the limiting distribution
satisfies certain invariance properties. Although applicable to a range of stochastic
hybrid systems, the contents of this section will prove particularly useful when we
consider PDEs with randomly switching boundary conditions in sections 3 and 4.

2.1. Discrete-time process. We first define the set Ω of all possible switching
environments and equip it with a probability measure P and associated expectation E.
Let μ0 and μ1 be two probability distributions on the positive real line. Define each
switching environment, ω ∈ Ω, as the sequence ω = (ω1, ω2, . . . ), where each ωk is a
pair of nonnegative real numbers, (τk0 , τ

k
1 ), drawn from μ0×μ1. That is, (τ

k
0 , τ

k
1 ) is an

R
2-valued random variable drawn from the product measure μ0 × μ1. We take P to

be the infinite product measure generated by μ0 × μ1. To summarize some notation,

ω = (ω1, ω2, ω3, . . . ) =
(
(τ10 , τ

1
1 ), (τ

2
0 , τ

2
1 ), (τ

3
0 , τ

3
1 ), . . .

) ∈ Ω.(2.1)

For each t ≥ 0, let Φ0
t (x) and Φ1

t (x) be two mappings from a separable Banach
space X to itself. Make the following assumptions on Φi

t for each i ∈ {0, 1}, t ≥ 0,
x, y ∈ X , and with τi an independent draw from μi:

(a) Φ0
t (x) = x = Φ1

t (x) if t = 0.
(b) t �→ Φi

t(x) ∈ X is continuous.
(c) E|Φi

τi(x)| < ∞.
(d) |Φi

t(x) − Φi
t(y)| ≤ Ki(t)|x − y| for some Ki(t).

(e) EK0(τ1)EK1(τ1) < ∞ and E log(K0(τ1)EK1(τ1)) < 0.
For each ω ∈ Ω, x ∈ X , and natural number k, define the compositions

Gk
ω(x) := Φ1

τk
1
◦ Φ0

τk
0
(x) and F k

ω (x) := Φ0
τk
0
◦ Φ1

τk
1
(x).

For each ω ∈ Ω, x ∈ X , and natural number n > 0, we define the forward maps ϕn and
γn and the backward maps ϕ−n and γ−n by the following compositions of G and F :

ϕn
ω(x) = Gn

ω ◦ · · · ◦G1
ω(x) and γn

ω(x) = Fn
ω ◦ · · · ◦ F 1

ω(x),

ϕ−n
ω (x) = G1

ω ◦ · · · ◦Gn
ω(x) and γ−n

ω (x) = F 1
ω ◦ · · · ◦ Fn

ω (x).
(2.2)

To make our notation complete, we define ϕ0(x) = x = γ0(x).
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Remark 1. The maps ϕn and γn are iterated random functions. (See [16] for a
review.) Assumptions (d) and (e) above ensure that Gk and F k are contracting on
average. Thus, {ϕn}n≥0 and {γn}n≥0 are Markov chains with invariant probability
distributions given by the distributions of the almost sure limits of ϕ−n and γ−n as
n → ∞, respectively. Moreover, the distributions of the Markov chains ϕn and γn

converge at a geometric rate to these invariant distributions. These results are imme-
diately attained by applying theorems in, for example, [16], [28], [19]. Nonetheless,
we prove the following proposition to make our results more self-contained.

Proposition 2.1. Define

Y1(ω) := lim
n→∞ϕ−n

ω (x) and Y0(ω) := lim
n→∞ γ−n

ω (x).(2.3)

These limits exist almost surely and are independent of x ∈ X.
Remark 2. A random set which attracts all initial data started at “−∞” and

is forward-invariant under the dynamics is called a random pullback attractor [28],
[14], [13], [34]. When that attractor consists of a single point almost surely, is called
a random point attractor. In this case, the single point can be viewed as a random
variable. Random variables such as these are often called random pullback attractors,
or “pullbacks” for short, because they take an initial condition x and pull it back to
the infinite past [13], [40], [33]. Since when the random attractor is a single point
one can associate to each realization of random “forcing” a single attracting solution
which gives the asymptotic behavior, this is also ofter referred to as the “one force,
one solution” paradigm [43], [33], [34].

Proof. We will show that the sequence ϕ−n(x) is almost surely Cauchy. Let
x1, x2 ∈ X and n ≥ m. Using the triangle inequality repeatedly, we obtain

|ϕ−n(x1)− ϕ−m(x2)| ≤
n∑

i=m+1

|G1 ◦ · · · ◦Gi(x1)−G1 ◦ · · · ◦Gi−1(x2)|

≤
n∑

i=m+1

|Gi(x1)− x2|
( i−1∏

j=1

K0(τ
j
0 )K1(τ

j
1 )

)
.

(2.4)

Assumptions (c), (d), and (e) give that E|Gi(x1) − x2| < ∞, and thus a simple
application of the Borel–Cantelli lemma gives the existence of an almost surely finite
random constant C1(ω) such that for all i ∈ N

|Gi(x1)− x2| < C1(ω)(i)
2.(2.5)

Let Zj := K0(τ
j
0 )K1(τ

j
1 ). A standard argument (see, for example, [16, Lemmas

5.2 and 5.4]) gives the existence of constants ε > 0, A > 0, and 0 < r < 1 such that

for all i ∈ Z, we have P(
∑i

j=1 logZj > −iε) < Ari, by assumption (e). Thus, another
application of the Borel–Cantelli lemma gives the existence of an almost surely finite
random constant C2(ω) such that for all i ∈ N

i∑
j=1

logZj ≤ −iε+ C2(ω).(2.6)

Plugging the bounds from (2.5) and (2.6) into (2.4) gives

|ϕ−n(x1)− ϕ−m(x2)| ≤
n∑

i=m+1

C1(ω)(i)
2e−iε+C2(ω).
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Therefore, ϕ−n(x1) is almost surely Cauchy, and thus Y1 exists almost surely. Since
x1 and x2 were arbitrary, Y1 is independent of the x used in its definition. The proof
for Y0 is similar.

The random variables Y1 and Y0 satisfy the following invariance properties.
Proposition 2.2. Let τ0 and τ1 be independent draws from μ0 and μ1. Then

Y0 =d Φ0
τ0(Y1) and Y1 =d Φ1

τ1(Y0),(2.7)

where =d denotes equal in distribution.
Proof. Let y ∈ X and observe that for any n ∈ N, we have that

γ−n(y) =d Φ0
τ0

(
ϕn−1(Φ1

τ1(y))
)
.

Taking the limit as n → ∞ yields

lim
n→∞ γ−n(y) =d lim

n→∞Φ0
τ0

(
ϕn−1(Φ1

τ1(y))
)
= Φ0

τ0

(
lim
n→∞ϕn−1(Φ1

τ1(y))
)

(2.8)

since Φ0
t (x) is continuous in x for each t. Recalling that the definitions of Y0 and

Y1 in (2.3) are independent of x by Proposition 2.1, we have that (2.8) becomes
Y0 =d Φ0

τ0(Y1). The proof that Y1 =d Φ1
τ1(Y0) is similar.

Proposition 2.3. Suppose there exists a nonempty set S ⊂ X so that for all
t ≥ 0, Φi

t : S → S for i = 0 and 1. Then Y0 and Y1 are in the closure, S̄, almost
surely.

Proof. If x ∈ S, then ϕ−n(x) ∈ S almost surely for all n ≥ 0 by assumption.
Thus, limn→∞ ϕ−n(x) = Y1 ∈ S̄ almost surely. But by Proposition 2.1, the random
variable Y1 is independent of the initial x used in its definition, so Y1 ∈ S̄ almost
surely. The proof for Y0 is similar.

2.2. Continuous-time process. To define the continuous time process, we
need more notation. Much of the following notation is standard in renewal theory.
For each ω ∈ Ω and natural number n, define

Sn :=

n∑
k=1

(
τk0 + τk1

)

with S0 := 0. Define S′
n+1 := Sn + τn+1

0 for n ≥ 0. Observe that S′
n < Sn < S′

n+1 <
Sn+1 by definition. Define

Nt := max{n ≥ 0 : Sn ≤ t}.
We also define the state process Jt for t ≥ 0 by

Jt :=

{
0 SNt ≤ t < S′

Nt+1,

1 S′
Nt+1 ≤ t.

(2.9)

Finally, for t ≥ 0, define the elapsed time since the last switch, often called the age
process, by

at := Jt(t− S′
Nt+1) + (1 − Jt)(t− SNt).

We are now ready to define our continuous-time X-valued process. For u0 ∈ X ,
ω ∈ Ω, and t ≥ 0, define

u(t, ω) = JtΦ
1
at

◦ Φ0

τ
Nt+1
0

(ϕNt(u0)) + (1− Jt)Φ
0
at
(ϕNt(u0)).(2.10)
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2.3. Convergence in distribution to mixture of pullbacks. In this section,
we will find the limiting distribution of u(t) as t → ∞. In order to describe this limiting
distribution, we will need to define three more random variables. Define a0 and a1 to
be two random variables with the following cumulative distribution functions:

P(a0 ≤ x) =
Emin(τ0, x)

Eτ0
and P(a1 ≤ x) =

Emin(τ1, x)

Eτ1
.

We will see in Lemma 2.6 that the distributions of a0 and a1 can be thought of as the
limiting distributions of the age process conditioned on either Jt = 0 or 1. Let ξ be a
Bernoulli random variable with parameter p := (Eτ1)/(Eτ0+Eτ1), the probability that
Jt = 1 at large time. Assume a0, a1, and ξ are all chosen to be mutually independent
and independent of (τk0 , τ

k
1 ) for every k. Recall that a measure μ on the real line is

said to be arithmetic if there exist a d > 0 so that μ({0, d, 2d, . . . }) = 1.
Theorem 2.4. Suppose that Φ0

t and Φ1
t satisfy assumptions (a)-(e) of section

2.1. Let u(t) be defined as in (2.10), and a0, a1, and ξ as in the above paragraph.
If the switching time distributions, μ0 and μ1, are nonarithmetic, then we have the
following convergence in distribution as t → ∞:

(u(t), Jt) →d (ū, ξ) as t → ∞,

where ū := ξΦ1
a1(Y0) + (1− ξ)Φ0

a0(Y1).
The pullbacks Y0 and Y1 give the invariant distributions of the discrete Markov

processes ϕn and γn defined in (2.2) (see Proposition 2.1 and Remark 1). Thus,
Theorem 2.4 describes the limiting distribution of the (not necessarily Markovian)
continuous process (u(t), Jt) in terms of the invariant distributions of related Markov
processes. Stated colloquially, Theorem 2.4 says that to go from the invariant distri-
butions of the discrete Markov processes to the limiting distribution of the continuous
process, one must do the following: first flip a coin with parameter p to decide which
map (Φ0 or Φ1) is being applied and then apply that map (say it’s Φi) to pullback
Y1−i for time ai, where ai is the amount of time since the last switch given that Φi is
currently being applied.

In the context of piecewise deterministic Markov processes given by switching
ordinary differential equations, the authors of [5] relate the invariant measure of the
continuous Markov process to the embedded discrete Markov chain. In particular, in
Proposition 2.4 of [5], the authors show that the ergodic probability measures of the
continuous and discrete processes form a one to one correspondence, and hence the
continuous process is stable if and only if the discrete process is stable.

In the following corollary, we show that if the switching time distributions are
exponential so that the continuous process (u(t), Jt) is Markov, then its limiting dis-
tribution actually is the invariant distribution of the embedded discrete Markov pro-
cess (if the initial map is either Φ1 or Φ0 with probability p or 1 − p). The corollary
follows immediately from Proposition 2.2 and Theorem 2.4 since the age of a Poisson
process is exponentially distributed.

Corollary 2.5. Suppose the switching time distributions, μ0 and μ1, are ex-
ponential with respective rate parameters r0 and r1. If ξ is Bernoulli with parameter
r0/(r0 + r1), then we have the following convergence in distribution as t → ∞:

(u(t), Jt) →d (ū, ξ) as t → ∞,

where ū := ξY1 + (1− ξ)Y0.
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Proof of Theorem 2.4. In light of Proposition 2.2, it is enough to prove the desired
convergence in distribution for ū := Φ1

a1 ◦ Φ0
τ0(Y1) + (1 − ξ)Φ0

a0(Y1), where τ0 is an
independent draw from μ0. Recall that if Z is a random variable taking values in
some metric space and a Borel subset S of that metric space satisfies P(Z ∈ ∂S) = 0
where ∂S denotes the boundary of S, then S is called a continuity set of Z. Let A,
B, C, and D be continuity sets of ξa1 + (1 − ξ)a0, ξτ0, ξ, and Y1, respectively. We
will show that

(2.11) P(at ∈ A, Jtτ
Nt+1
0 ∈ B, Jt ∈ C,ϕNt(u0) ∈ D)

→ P(ξa1 + (1 − ξ)a0 ∈ A, ξτ0 ∈ B, ξ ∈ C, Y1 ∈ D) as t → ∞.

Once this convergence is shown, the conclusion of the theorem quickly follows. To
see this, assume the convergence in (2.11) holds. Define the (R3 ×X)-valued random
variable Yt := (at, Jtτ

Nt+1
0 , Jt, ϕ

Nt), where we have suppressed the u0 dependence.
We will usually suppress this dependence since the limiting random variables don’t
depend on the initial u0 (see Proposition 2.1). Since X is assumed to be separable,
the product R3 ×X is separable and thus we can apply Theorem 2.8 in [7] to obtain
that Yt converges in distribution to (ξa1 + (1− ξ)a0, ξτ0, ξ, Y1) as t → ∞.

Define the function g : R3 ×X → X by g(a, t, j, y) = jΦ1
a ◦ Φ0

t (y) + (1 − j)Φ0
t (y)

and observe that u(t) = g(at, τ
Nt+1

0 , Jt, ϕ
Nt) and ū = g(a1, τ0, ξ, Y ). Further define

the function h : (R3 ×X) → (X × R) by h(a, t, j, y) = (g(a, t, j, y), j). The function
h is continuous because g is continuous, and thus the conclusion of the theorem
follows from the continuous mapping theorem (see, for example, Theorem 3.2.4 in
[20]). Therefore, it remains only to show the convergence in (2.11). Our proof relies
on the auxiliary Lemmas 2.6–2.13, whose proofs are given in subsection 2.4.

In what follows, we will make extensive use of indicator functions. For ease of
reading, we will often denote the indicator 1A = 1A(ω) by {A} = {A}(ω).

For each t ≥ 0, define Ft to be the σ-algebra generated by SNt and {(τk0 , τk1 )}∞k=Nt+1.

Since at, τ
Nt+1
0 , and Jt are measurable with respect to Ft, the tower property of con-

ditional expectation and the triangle inequality give∣∣∣E{at ∈ A, Jtτ
Nt+1
0 ∈ B, Jt ∈ C,ϕNt ∈ D}

− E{ξa1 + (1− ξ)a0 ∈ A, ξτ0 ∈ B, ξ ∈ C, Y1 ∈ D}
∣∣∣

≤
∣∣∣E [

{at ∈ A, Jtτ
Nt+1
0 ∈ B, Jt ∈ C}E[{ϕNt ∈ D}|Ft]

]
− E

[
{at ∈ A, Jtτ

Nt+1
0 ∈ B, Jt ∈ C}E[{Y1 ∈ D}]

] ∣∣∣
+
∣∣∣E [

{at ∈ A, Jtτ
Nt+1
0 ∈ B, Jt ∈ C}E[{Y1 ∈ D}]

]
− E{ξa1 + (1− ξ)a0 ∈ A, ξτ0 ∈ B, ξ ∈ C}{Y1 ∈ D}

∣∣∣.
By Lemma 2.11, we have that E

[{ϕNt ∈ D}|Ft

] → E [{Y1 ∈ D}] almost surely as
t → ∞. Therefore, the first term goes to 0 by the dominated convergence theorem.
Since Y1 is independent of ξ, a1, a0, and τ0, the second term is bounded above by

Ψ :=
∣∣E{at ∈ A, Jtτ

Nt+1
0 ∈ B, Jt ∈ C} − E{ξa1 + (1− ξ)a0 ∈ A, ξτ0 ∈ B, ξ ∈ C}∣∣.(2.12)
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To show that Ψ goes to 0 as t → ∞, we consider the four possible cases for the
inclusion of 0 and 1 in C. If both 0 and 1 are not in C, then Ψ is 0 for all t ≥ 0 since
Jt and ξ are each almost surely 0 or 1.

Suppose 0 ∈ C and 1 /∈ C. Then the indicator function in the first term of Ψ is
only nonzero if Jt = 0. Hence, we can replace {Jt ∈ C} by (1−Jt) and {JtτNt+1

0 ∈ B}
by {0 ∈ B}. Similarly, in the second term we replace {ξ ∈ C} by (1 − ξ), {ξτ0 ∈ B}
by {0 ∈ B}, and {ξa1 + (1− ξ)a0 ∈ A} by {a0 ∈ A}. Thus, Ψ becomes

Ψ = |E{at ∈ A, 0 ∈ B}(1− Jt)− E{a0 ∈ A, 0 ∈ B}(1− ξ)|
≤ |E{at ∈ A}(1− Jt)− E{a0 ∈ A}(1− ξ)|.

By Lemma 2.6, this term goes to 0 as t → ∞.
Suppose 1 ∈ C and 0 /∈ C. Then the indicator function in the first term of Ψ is

only nonzero if Jt = 1. Thus, after performing replacements similar to those above,
Ψ becomes

Ψ = |E{at ∈ A, τNt+1
0 ∈ B}Jt − E{a1 ∈ A, τ0 ∈ B}ξ|.

Define F ′
t to be the σ-algebra generated by S′

Nt+1, τNt+1
1 , and {(τk0 , τk1 )}∞k=Nt+2.

Observe that Jt and at are both measurable with respect to F ′
t. Therefore, by the

tower property of conditional expectation and the triangle inequality, we have that

|E{at ∈ A, τNt+1
0 ∈ B}Jt − E{a1 ∈ A, τ0 ∈ B}ξ|

≤ |E
[
{at ∈ A}JtE

[
{τNt+1

0 ∈ B}|F ′
t

]]
− E [{at ∈ A}JtE [{τ0 ∈ B}]] |

+ |E[{at ∈ A}JtE[{τ0 ∈ B}]]− E{a1 ∈ A, τ0 ∈ B}ξ|.

Lemma 2.12 gives us that JtE[{τNt+1
0 ∈ B}|F ′

t] = JtE[{τ10 ∈ B}|F ′
t] almost surely,

and Lemma 2.13 gives that E[{τ10 ∈ B}|F ′
t] → E[{τ0 ∈ B}] almost surely as t → ∞.

Therefore, the first term goes to 0 as t → ∞ by the dominated convergence theorem.
Finally, since τ0 is independent of ξ and a1, we have the following bound on the second
term:

|E[{at ∈ A}JtE[{τ0 ∈ B}]]− E{a1 ∈ A, τ0 ∈ B}ξ| ≤ |E{at ∈ A}Jt − E{a1 ∈ A}ξ|.
This goes to 0 as t → ∞ by Lemma 2.6.

Finally, if both 0 ∈ C and 1 ∈ C, then Ψ becomes

Ψ =|E{at ∈ A, Jtτ
Nt+1
0 ∈ B} − E{ξa1 + (1− ξ)a0 ∈ A, ξτ0 ∈ B}|

≤|E{at ∈ A, τNt+1
0 ∈ B}Jt − E{a1 ∈ A, τ0 ∈ B}ξ|

+ |E{at ∈ A, 0 ∈ B}(1− Jt)− E{a0 ∈ A, 0 ∈ B}(1− ξ)|.
We’ve already shown that each of these terms go to zero as t → ∞, so the proof is
complete.

2.4. The lemmas. We now state and prove all of the lemmas that are needed
for Theorem 2.4. This first lemma calculates the limiting distribution of the age
process. It can be interpreted as first flipping a coin to determine if Jt is 0 or 1 and
then choosing from the limiting distribution of the age conditioned on Jt.

Lemma 2.6. For any continuity set A of ξa1 + (1− ξ)a0, we have that as t → ∞
|E{at ∈ A}Jt − E{a1 ∈ A}ξ|+ |E{at ∈ A}(1− Jt)− E{a0 ∈ A}(1− ξ)| → 0.
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Proof. We will first show the desired convergence for sets of a special form and
then extend to a continuity set. Let x ≥ 0 and consider the alternating renewal process
that is said to be “on” when 0 ≤ t − S′

Nt+1 ≤ x and “off” otherwise. Formally, we
define the “on/off” state process

bt =

{
1 if 0 ≤ t− S′

Nt+1 ≤ x,

0 otherwise.

Observe that the lengths of time that the process is on are {min(τk1 , x)}∞k=1. Similarly,
the lengths of time that the process is off are τ10 and {τk0 +(τk−1

1 −x)+}∞k=2, where as
usual (y)+ is equal to y if y ≥ 0, and 0 otherwise. Since the distribution of min(τk1 , x)+
τk0 + (τk−1

1 − x)+ is nonarithmetic, and since E[min(τk1 , x) + τk0 + (τk−1
1 − x)+] < ∞,

we can apply Theorem 3.4.4 in [39] to obtain

lim
t→∞P(bt = 1) =

Emin(τ1, x)

E[min(τk1 , x) + τk0 + (τk−1
1 − x)+]

.(2.13)

Informally, this intuitive result states that the probability that the alternating renewal
process is on at large time is just the expected length of an on bout divided by the
sum of the expected lengths of an off bout and an on bout. Since E[min(τk1 , x) +
τk0 + (τk−1

1 − x)+] = Eτ0 + Eτ1 and since the distribution of a1 is chosen so that
Eτ1P(a

1 ≤ x) = Emin(τ1, x), (2.13) simplifies to

lim
t→∞P(bt = 1) =

Eτ1P(a
1 ≤ x)

Eτ0 + Eτ1
.

Therefore,

(2.14)
E[{at ≤ x}Jt]= P(at ≤ x, Jt = 1) = P(0 ≤ t− SNt+1 ≤ x)

= P(bt = 1) −−−→
t→∞

Eτ1P(a
1 ≤ x)

Eτ0 + Eτ1
= E[{a1 ≤ x}ξ].

The last equality holds because ξ and a1 are independent and Eξ = Eτ1/(Eτ0 +Eτ1).
Further, since the switching time distributions, μ0 and μ1, are nonarithmetic, we

can apply Theorem 3.4.4 in [39] to conclude that

|P(Jt = 0)− P(ξ = 0)| → 0 as t → ∞.(2.15)

Now observe that

|E{Jtat ≤ x} − E{ξa1 ≤ x}| ≤ |P(Jt = 0)− P(ξ = 0)|+ |E{at ≤ x}Jt − E{a1 ≤ x}ξ|.
This bound and the convergence in (2.14) and (2.15) gives that |E{Jtat ≤ x}−E{ξa1 ≤
x}| → 0 as t → ∞. Thus, Jtat →d ξa1. Further, it’s easy to see that any continuity
set of ξa1 + (1− ξ)a0 must be a continuity set of ξa1. Thus, for any continuity set A
of ξa1+(1− ξ)a0, we have that |E{Jtat ∈ A}−E{ξa1 ∈ A}| → 0 by the Portmanteau
theorem (see, for example, [7]). Thus,

|E{at ∈ A}Jt − E{a1 ∈ A}ξ|
≤ |E{Jtat ∈ A} − E{ξa1 ∈ A}|+ |P(Jt = 0)− P(ξ = 0)| → 0 as t → ∞.

The analogous argument shows that |E{at ∈ A}(1− Jt)−E{a0 ∈ A}(1− ξ)| → 0
as t → ∞, and the proof is complete.
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The next three lemmas are general results that are all relatively standard. We
return to lemmas specific to our problem in Lemma 2.10.

Lemma 2.7. Suppose Xt → X∞ a.s. as t → ∞ and |Xt| ≤ B a.s., where B is
a random variable satisfying EB < ∞. If Ft ⊂ Fs for 0 ≤ s ≤ t is a right-contiuous
filtration, and F∞ := ∩t≥0Ft, then

E[Xt|Ft] → E[X∞|F∞] almost surely as t → ∞.

Proof. We first show the convergence for an X∞ = Xt independent of t. Let X∞
be any integrable random variable, and for t ≤ 0 define

Mt := E [X∞|F−t] .

We claim that {Mt}−∞
t=0 is a backward martingale with respect to the filtration {M}−∞

t=0 ,
where Mt := F−t. For s ≤ t ≤ 0, we have that F−s ⊂ F−t and, therefore by the
tower property of conditional expectation,

E[Mt|F−s] = E [E [X∞|F−t] |F−s] = E [X∞|F−s] = Ms.

Since by definition of conditional expectation Mt ∈ F−t, and since Mt ≤ B almost
surely where EB < ∞, we have that Mt is indeed a backward martingale. Because
of the continuity properties of Ft, we know we have a separable version of Mt. By
the backward martingale convergence theorem (see [17, Theorem 4.2s, p. 354], for
example), M−∞ := limt→−∞ Mt exists almost surely and in L1(Ω).

We claim that M−∞ = E [X∞|F∞]. Since for t ≤ T ≤ 0 we have that Mt ∈
F−t ⊂ F−T , it follows that M−∞ ∈ F−T . Since T ≤ 0 was arbitrary, M−∞ ∈ F∞.

Let A ∈ F∞. Then

|EM−t1A − EM−∞1A| ≤ E|M−t1A −M−∞1A| ≤ E|M−t −M−∞| → 0 as t → ∞
since M−t → M−∞ in L1(Ω). But

EM−t1A = E[E [X∞|Ft] 1A] = E[E [X∞1A|Ft]] = EX∞1A.

Therefore, EX1A = EM−∞1A, and so we conclude that M−∞ = E [X∞|F∞].
We now show the convergence for the case where Xt depends on t. Let T ≥ 0

and define BT := sup{|Xt −Xs| : t, s > T }. BT ≤ 2B, so BT is integrable. Thus,

lim sup
t→∞

E [|Xt −X∞|Ft] ≤ lim
t→∞E [BT |Ft] = E [BT |F∞] .

By assumption, BT → 0 a.s. as T → ∞, so by Jensen’s inequality

|E [Xt|Ft]− E [X∞|Ft] | ≤ E [|Xt −X∞‖Ft] → 0.

Therefore,

|E [Xt|Ft]− E [X∞|F∞] | ≤ |E [Xt|Ft]− E [X∞|Ft] |+ |E [X∞|Ft]− E [X∞|F∞] |.
We’ve just shown that the first term goes to 0, and we’ve shown that the second term
goes to 0 since X∞ doesn’t depend on t, so the proof is complete.

Lemma 2.8. If Xn → X∞ a.s. as n → ∞ and Nt → ∞ a.s. as t → ∞, then

XNt → X∞ a.s. as t → ∞.
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Proof. Let A := {Xn � X∞} and B := {Nt � ∞}. Then

P(XNt � X∞) ≤ P(A ∪B) ≤ P(A) + P(B) = 0.

We now give some standard definitions. Let (Ω,F , P ) be a probability space.
A measurable map π : Ω → Ω is said to be measure preserving if P(π−1A) = P(A)
for all A ∈ F . Let π be a given measure preserving map. A set A ∈ F is said
to be π-invariant if π−1A = A, where two sets are considered to be equal if their
symmetric difference has probability 0. A random variable X is said to be π-invariant
if X = X ◦ π almost surely.

Lemma 2.9. Let π : Ω → Ω be a measure preserving map. If X is π-invariant,
then so is every set in its σ-algebra.

Proof. See, for example, [20, Exercise 7.1.1].
We remind the reader that we suppress the u0 dependence and write ϕNt(u0) =

ϕNt . We will usually suppress this dependence since the limiting random variables
don’t depend on the initial u0 (see Proposition 2.1).

Lemma 2.10. For each t ≥ 0, define Ft to be the σ-algebra generated by SNt and
{(τk0 , τk1 )}∞k=Nt+1. If D is a Borel set of X, then for each t ≥ 0

E
[{ϕNt ∈ D}|Ft

]
= E

[{ϕ−Nt ∈ D}|Ft

]
a.s.

Remark 3. To see why this lemma should be true, observe that (a) the random
variables ϕNt and ϕ−Nt are equal after a reordering of the first Nt-many ωk’s and
that (b) the random variables generating Ft don’t depend on the order of the first
Nt-many ωk’s.

Proof. Fix a t ≥ 0 and let A ∈ Ft. By the definition of conditional expectation,
we have that∫

Ω

E
[{ϕNt ∈ D}|Ft

]
(ω){A}(ω) dP =

∫
Ω

{ϕNt ∈ D}(ω){A}(ω) dP.

Define σt : Ω → Ω to be the permutation that inverts the order of the first Nt-
many ωk’s, that is, (σt(ω))k = ωNt−k+1 for k ∈ {1, . . . , Nt} and (σt(ω))k = ωk for
k > Nt. Observe that Nt(ω) = Nt(σt(ω)) and thus ϕNt(ω) = ϕ−Nt(σt(ω)). Also, SNt

and {(τk0 , τk1 )}∞k=Nt+1 are σt-invariant, so A is σt-invariant by Lemma 2.9. Thus,∫
Ω

{ϕNt ∈ D}(ω){A}(ω) dP =

∫
Ω

{ϕ−Nt ∈ D}(σt(ω)){A}(σt(ω)) dP.

Since σt is measure preserving and by the definition of conditional expectation,∫
Ω

{ϕ−Nt ∈ D}(σt(ω)){A}(σt(ω)) dP =

∫
Ω

{ϕ−Nt ∈ D}(ω){A}(ω) dP

=

∫
Ω

E
[{ϕ−Nt ∈ D}|Ft

]
(ω){A}(ω) dP.

Putting this all together,∫
Ω

E[{ϕNt ∈ D}|Ft]{A} dP =

∫
Ω

E[{ϕ−Nt ∈ D}|Ft]{A} dP.

Since A was an arbitrary element of Ft, the proof is complete.
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Recall that the random variable Y1 is defined by Y1 := limn→∞ ϕ−n(x) and is
independent of the choice of x ∈ X , by Proposition 2.1.

Lemma 2.11. For each t ≥ 0, define Ft to be the σ-algebra generated by SNt and
{(τk0 , τk1 )}∞k=Nt+1. If D is a Y1-continuity set, then with probability one

E
[{ϕ−Nt ∈ D}|Ft

] → E{Y1 ∈ D} as t → ∞(2.16)

and E
[{ϕNt ∈ D}|Ft

] → E{Y1 ∈ D} as t → ∞(2.17)

Proof. In light of Lemma 2.10, it suffices to show the convergence in (2.16).
Since ϕ−n → Y1 almost surely as n → ∞ and since Nt → ∞ almost surely

as t → ∞, we have that ϕ−Nt → Y1 almost surely by Lemma 2.8. We claim that
{ϕ−Nt ∈ D} → {Y1 ∈ D} almost surely. Since ϕ−Nt → Y1 almost surely and
P(Y1 ∈ ∂D) = 0, there exists a set S ⊂ Ω of full measure such that if ω ∈ S, then
ϕ−Nt(ω) → Y1(ω) /∈ ∂D as t → ∞. Let ω ∈ S. If Y1(ω) ∈ D, then Y1(ω) must be
in the interior of D and hence there exists some r > 0 such that the ball of radius
r centered at Y1(ω) is contained in the interior of D. Since ϕ−Nt(ω) → Y1(ω), there
must exist some T such that ϕ−Nt(ω) is within r of Y1(ω) for all t ≥ T and hence
ϕ−Nt(ω) ∈ D for all t ≥ T . Thus, {ϕ−Nt ∈ D}(ω) → {Y1 ∈ D}(ω) = 1. A similar
argument shows that {ϕ−Nt ∈ D}(ω) → {Y1 ∈ D}(ω) = 0 if ω ∈ S is such that
Y1(ω) /∈ D. Hence, {ϕ−Nt ∈ D} → {Y1 ∈ D} on S which has full measure, so the
convergence is almost sure.

Define F∞ := ∩t≥0Ft and observe that Ft ⊂ Fs for t ≥ s ≥ 0. Thus, by Lemma
2.7,

E
[{ϕ−Nt ∈ D}|Ft

] → E [{Y1 ∈ D}|F∞] almost surely as t → ∞.

To complete the proof, we will show that for every A ∈ F∞, P(A) = 0 or 1. To
show this, we will show that F∞ is contained in the exchangeable σ-algebra and then
apply the Hewitt–Savage zero-one law. Let n ∈ N, A ∈ F∞, and πn be an arbitrary
permutation of ω1, . . . , ωn. Define πt : Ω → Ω by

πt(ω) =

{
πn(ω) Nt ≥ n,

ω Nt < n.

Since SNt and {(τk0 , τk1 )}∞k=Nt+1 are πt-invariant, A is πt-invariant by Lemma 2.9 as
A ∈ F∞ ⊂ Ft. Therefore,

P(AΔπ−1
n A,Nt ≥ n) = P(AΔπ−1

t A,Nt ≥ n) ≤ P(AΔπ−1
t A) = 0.

Hence,

P(AΔπ−1
n A) = P(AΔπ−1

n A,Nt ≥ n) + P(AΔπ−1
n A,Nt < n)

≤ P(AΔπ−1
n A,Nt < n) ≤ P(Nt < n).

Since t was arbitrary, and because P(Nt < n) → 0 as t → ∞ since Nt → ∞
almost surely, we conclude that P(AΔπ−1

n A) = 0. Since πn was an arbitrary finite
permutation, we conclude that F∞ is contained in the exchangeable σ-algebra. By
the Hewitt–Savage zero-one law, F∞ only contains events that have probability 0 or
1. Thus, {Y1 ∈ D} is trivially independent of F∞, and therefore E [{Y1 ∈ D}|F∞] =
E{Y1 ∈ D}.
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Lemma 2.12. For each t ≥ 0, define F ′
t to be the σ-algebra generated by S′

Nt+1,

τNt+1
1 , and {(τk0 , τk1 )}∞k=Nt+2. Then

JtE
[
{τNt+1

0 ∈ B}|F ′
t

]
= JtE

[{τ10 ∈ B}|F ′
t

]
almost surely.

Remark 4. Recall that Jt is either 0 if SNt ≤ t < S′
Nt+1 or 1 if S′

Nt+1 ≤ t. Hence,

this lemma states that E
[
{τNt+1

0 ∈ B}|F ′
t

]
= E

[{τ10 ∈ B}|F ′
t

]
if Jt = 1.

Remark 5. The proof of this lemma is very similar to the proof of Lemma 2.10.
Proof. If ω is such that Jt = 0, then the equality is trivially satisfied. Let A ∈ F ′

t.
Since {ω ∈ Ω : Jt(ω) = 1} ∈ F ′

t, we have by the definition of conditional expectation
that∫

Ω

E

[
{τNt+1

0 ∈ B}|F ′
t

]
{A, Jt = 1} dP =

∫
Ω

{τNt+1
0 ∈ B}(ω){A, Jt = 1}(ω) dP.

Define σt : Ω → Ω by

(σt(ω))k =

⎧⎪⎨
⎪⎩
(τNt+1

0 , τ11 ) if k = 1 and Jt = 1,

(τ10 , τ
Nt+1
1 ) if k = Nt + 1 and Jt = 1,

ωk otherwise.

That is, σt switches τ
1
0 and τNt+1

0 if Jt = 1 and otherwise does nothing. Since S′
Nt+1,

τNt+1
1 , and {(τk0 , τk1 )}∞k=Nt+2 are all σt-invariant, we have that A is σt-invariant by
Lemma 2.9. Also observe that {Jt = 1} is σt-invariant. Thus,∫

Ω

{τNt+1
0 ∈ B}(ω){A, Jt = 1}(ω) dP =

∫
Ω

{τ10 ∈ B}(σt(ω)){A, Jt = 1}(σt(ω)) dP.

Since σt is measure preserving, and by the definition of conditional expectation, we
have that∫

Ω

{τ10 ∈ B}(σt(ω)){A, Jt = 1}(σt(ω)) dP =

∫
Ω

{τ10 ∈ B}(ω){A, Jt = 1}(ω) dP

=

∫
Ω

E
[{τ10 ∈ B}|F ′

t

] {A, Jt = 1} dP.

Putting all this together,∫
Ω

E[{τNt+1
0 ∈ B}|F ′

t]{A, Jt = 1} dP =

∫
Ω

E[{τ10 ∈ B}|F ′
t]{A, Jt = 1} dP.

This implies that E[{τNt+1
0 ∈ B}|F ′

t] = E[{τ10 ∈ B}|F ′
t] almost surely on {Jt =

1}. To see this, let ε > 0 define Λ := {ω ∈ Ω : E[{τNt+1
0 ∈ B}|F ′

t] − E[{τ10 ∈
B}|F ′

t] ≥ ε}. This set is in F ′
t, so by the above calculation we have that

0 =

∫
Λ∩{Jt=1}

E[{τNt+1
0 ∈ B}|F ′

t]− E[{τ10 ∈ B}|F ′
t] dP ≥ εP(Λ ∩ {Jt = 1}).

So P(Λ ∩ {Jt = 1}) = 0. The same argument with Λ′ := {ω ∈ Ω : E[{τ10 ∈ B}|F ′
t]−

E[{τNt+1
0 ∈ B}|F ′

t] ≥ ε} completes the proof of the claim. Therefore, JtE[{τNt+1
0 ∈

B}|F ′
t] = JtE[{τ10 ∈ B}|F ′

t] almost surely.
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Lemma 2.13. For each t ≥ 0, define F ′
t to be the σ-algebra generated by S′

Nt+1,

τNt+1
1 , and {(τk0 , τk1 )}∞k=Nt+2. Then

E
[{τ10 ∈ B}|F ′

t

] → E{τ0 ∈ B} almost surely as t → ∞.

Remark 6. The proof of this lemma is very similar to the proof of Lemma 2.11.
Proof. Define F ′∞ := ∩t≥0F ′

t and observe that F ′
s ⊃ F ′

t for 0 ≤ s ≤ t. Thus,
by Lemma 2.7

E
[{τ10 ∈ B}|F ′

t

] → E
[{τ10 ∈ B}|F ′

∞
]

almost surely.

We claim that for each A ∈ F ′
∞, P(A) = 0 or 1. To show this, we will show

that F ′
∞ is contained in the exchangeable σ-algebra and then apply the Hewitt–

Savage zero-one law. Let n ∈ N, A ∈ F ′∞, and πn be an arbitrary permutation of
(τ10 , τ

1
1 ), . . . , (τ

n
0 , τ

n
1 ).

Define πt : Ω → Ω by

πt(ω) =

{
πn(ω) Nt ≥ n,

ω Nt < n.

Since S′
Nt+1, τ

Nt+1
1 , and {(τk0 , τk1 )}∞k=Nt+2 are πt-invariant, A is πt-invariant by Lemma

2.9 as A ∈ F ′
∞ ⊂ F ′

t. Therefore,

P(AΔπ−1
n A,Nt ≥ n) = P(AΔπ−1

t A,Nt ≥ n) ≤ P(AΔπ−1
t A) = 0.

Hence,

P(AΔπ−1
n A) = P(AΔπ−1

n A,Nt ≥ n) + P(AΔπ−1
n A,Nt < n)

≤ P(AΔπ−1
n A,Nt < n) ≤ P(Nt < n).

Since t was arbitrary, we conclude that P(AΔπ−1
n A) = 0 because P(Nt < n+1) → 0 as

t → ∞ since Nt → ∞ almost surely. Since πn was an arbitrary finite permutation, we
conclude that F ′

∞ is contained in the exchangeable σ-algebra. By the Hewitt–Savage
zero-one law, F ′

∞ contains only events that have probability 0 or 1. Thus, {τ10 ∈ C}
is trivially independent of F ′∞, and so we conclude that E

[{τ10 ∈ C}|F ′∞
]
= E{τ10 ∈

C} = E{τ0 ∈ C}.
3. PDEs with randomly switching boundary conditions. We now use our

results from section 2 to study parabolic PDEs with randomly switching boundary
conditions. Our results apply to a range of specific problems, so in section 3.1 we ex-
plain how to cast a problem in our framework. In section 3.2, we collect assumptions,
and in section 3.3, we prove theorems about the mean of the process.

3.1. General setup. Our results can be applied to the following type of ran-
dom PDE. Suppose we are given a strongly elliptic, symmetric, linear, second order
differential operator L on a domain D ⊂ R

d with smooth coefficients which do not
depend on t. Assume that the domain D is bounded with a smooth boundary. We
consider the stochastic process u(t, x) that solves

∂tu = Lu in D(3.1)

subject to boundary conditions that switch at random times between two given bound-
ary conditions, (a) and (b). We allow (a) and (b) to be different types; for example,
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one can be Dirichlet and the other Neumann. For the sake of presentation, we assume
(a) are homogenous, but our analysis is easily modified to include the case where (a)
are inhomogenous.

We formulate this problem in the setting of section 2 as alternating flows on the
Hilbert space L2(D). We define

Au := Lu if u ∈ D(A) and Bu := Lu if u ∈ D(B),

where D(A) is chosen so that A generates the contraction C0-semigroup that maps an
initial condition to the solution of (3.1) at time t subject to boundary conditions (a),
and D(B) is chosen so that B generates the contraction C0-semigroup that maps an
initial condition to the solution of (3.1) at time t subject to the homogenous version
of boundary conditions (b). We then choose h(t) : [0,∞) → D(L) to satisfy ∂th = Lh
with boundary conditions (b) and initial condition h(0) = 0. Then the H-valued
process defined in (2.10) in section 2 with Φ1

t (f) = eAtf and Φ0
t (f) = eBtf + h(t)

corresponds to this random PDE.

3.2. Assumptions. We now formalize the setup from section 3.1. Let H be a
real separable Hilbert space with inner product 〈·, ·〉 and let A and B be two self-
adjoint operators on H , one with strictly negative spectrum and one with nonpositive
spectrum. Hence, A and B generate contraction C0-semigroups, which we denote,
respectively, by eAt and eBt. Assume A = B on D(A)∩D(B) �= ∅. Assume that there
exists a continuous function h(t) : [0,∞) → H satisfying h(0) = 0 and d

dt 〈φ, h(t)〉 =〈Bφ, h(t)〉 for all φ ∈ D(A) ∩ D(B). Recalling notation from section 2.1, let the
switching time distributions, μ0 and μ1, be continuous distributions on the positive
real line.

Let u(t, ω) be the H-valued process defined in (2.10) in section 2.2 with

Φ1
t (f) = eAtf and Φ0

t (f) = eBtf + h(t).

It’s easy to check that Φ1
t and Φ0

t satisfy assumptions (a)-(e) from section 2.1.
Assume there exists a deterministic M = M(u0) so that with probability one,

‖u(t)‖ ≤ M for each t ≥ 0, where ‖x‖ :=
√〈x, x〉.

For every 0 < s ≤ t, define η(s, t) to be the random variable that gives the number
of switches that occur on the interval (s, t). Formally, we define η(s, t) by taking the
supremum over partitions σ of the interval (s, t), s = σ0 < σ1 < · · · < σk < σk+1 = t,

η(s, t)(ω) := sup
σ

k∑
i=0

|Jσi+1(ω)− Jσi(ω)|,(3.2)

where Jt is as in (2.9). Assume that μ0 and μ1 are such that for every t > 0, we have
that as s → 0,

P (η(t, t+ s) = 1) = O(s) and P (η(t, t+ s) ≥ 2) = o(s).

3.3. The mean satisfies the PDE. In what follows, fix φ ∈ D(A) ∩ D(B),
which will serve as our test function. The following theorem states that the mean of
our process satisfies the weak form of the PDE. We note that we use E to denote the
Bochner integral of Hilbert space-valued random variables.

Theorem 3.1. For each φ ∈ D(A) ∩D(B) and t > 0, we have that

d

dt
〈φ,Eu(t)〉 = 〈Aφ,Eu(t)〉.
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To prove this theorem, we need a few lemmas. Our first lemma states that each
realization of our stochastic process satisfies the weak form of the PDE away from
switching times.

Lemma 3.2. Let ω0 ∈ Ω be given. If t0 > 0 is such that t0 �= Sk(ω0) and
t0 �= S′

k(ω0) for every k, then for all t in some neighborhood of t0,

d

dt
〈φ, u(t, ω0)〉 = 〈Aφ, u(t, ω0)〉.

Proof. By the definition of u(t, ω) and the assumption that A and B are self-
adjoint, we can write the inner product of φ and u as

〈φ, u(t)〉 = 〈φ, eAatu(S′
Nt+1)〉Jt + 〈φ, eBatu(SNt) + h(at)〉(1 − Jt)

= 〈eAatφ, u(S′
Nt+1)〉Jt + 〈eBatφ, u(SNt)〉(1 − Jt) + 〈φ, h(at)〉(1 − Jt).

We now calculate d
dte

Aatφ and d
dte

Batφ, where d
dt means the limit in H of the

difference quotients. Since t0 is such that t0 �= Sk(ω0) and t0 �= S′
k(ω0) for all k, there

exists a neighborhood J(ω0) = J of t0 so that no switches occur in J . Therefore, SNt ,
S′
Nt+1, and Jt are constant on J . And since eAt is a C0-semigroup and φ ∈ D(A), we

have that for all t ∈ J

d

dt
eAatφ =

d

dt
eA(t−S′

Nt+1)φ =
d

dt
eAte−AS′

Nt+1φ = AeAte−AS′
Nt+1φ = AeAatφ.

Similarly, d
dte

Batφ = BeBatφ. Since strongly convergent sequences in H are weakly
convergent, and again since SNt , S

′
Nt+1, and Jt are constant on J , we have that for

all t ∈ J

d

dt
〈φ, u(t)〉 = 〈AeAatφ, u(S′

Nt+1)〉Jt +
(〈BeBatφ, u(SNt)〉+

d

dt
〈φ, h(at)〉

)
(1− Jt).

Since A and B are self-adjoint, A = B on D(A)∩D(B), and d
dt〈φ, h(t)〉 = (Bφ, h(t)),

we conclude that for all t ∈ J ,

d

dt
〈φ, u(t)〉 = 〈Aφ, eAatu(S′

Nt+1)〉Jt + 〈Bφ, eBatu(SNt) + h(at)〉(1− Jt)

= 〈Aφ, u(t)〉Jt + 〈Bφ, u(t)〉(1 − Jt) = 〈Aφ, u(t)〉.

The next lemma states that our process satisfies a weak continuity condition.
Lemma 3.3. For every ε > 0 and t > 0, there exists a δ(ε, t) > 0 so that if

|t− s| < δ(ε, t), then

|〈φ, u(t, ω)− u(s, ω)〉1η(s,t)=1| < ε a.s.

Proof. Let s and t be given and let ρ be the minimum of s and t. Observe that
if there are no switches between s and t and Jρ = 0, then

|〈φ, u(t, ω)− u(s, ω)〉| =
∣∣∣〈φ, [eA|t−s| − I]u(ρ, ω)〉

∣∣∣ ≤ ‖eA|t−s|φ− φ‖M,

since A is self-adjoint and ‖u(t)‖ ≤ M a.s. by assumption. Similarly, suppose there
are no switches between s and t and Jρ = 1. If M2 = maxξ≤2t ‖h(ξ)‖ and |t− s| < t,
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then we have by the mean value theorem∣∣〈φ, u(t, ω)− u(s, ω)〉∣∣ ≤ ∣∣〈φ, [eB|t−s| − I][u(ρ, ω)− h(aρ)]〉
∣∣ + ∣∣〈φ, h(at)− h(as)〉

∣∣
≤ ∣∣〈[eB|t−s| − I]φ, u(ρ, ω)− h(aρ)〉

∣∣+ |t− s|max
ξ≤2t

d

dt

∣∣〈φ, h(ξ)〉∣∣
≤ ‖eB|t−s|φ− φ‖(M +M2

)
+ |t− s|‖Bφ‖M2.

Since eAt and eBt are both C0-semigroups, we can choose a 0 < δ(ε, t) < t so that
if |t− s| < δ(ε, t), then

max{‖eA|t−s|φ− φ‖, ‖eB|t−s|φ− φ‖, |t− s|} <
ε

M +M2 + ‖Bφ‖M2
.

Let ω ∈ Ω be given and assume |t − s| < δ(ε, t). If ω is such that η(s, t)(ω) �= 1,
then the result is immediate. Suppose η(s, t)(ω) = 1. If σ denotes the switching time
between s and t, then

|〈φ, u(t, ω)− u(s, ω)〉| ≤ ∣∣〈φ, u(t, ω)− u(σ, ω)〉∣∣ + ∣∣〈φ, u(σ, ω) − u(s, ω)〉∣∣ < 3ε.

Proof of Theorem 3.1. We seek to differentiate E〈φ, u(t)〉 with respect to t. Define

f(t, ω) = 〈φ, u(t, ω)〉.
Let hn → 0 as n → ∞. For a given t0 > 0, define the difference quotient

gn(ω) :=
1

hn
(f(t0 + hn, ω)− f(t0, ω))

= gn(ω)1η(t0+hn,t0)=0 + gn(ω)1η(t0+hn,t0)=1 + gn(ω)1η(t0+hn,t0)≥2

= Ψ0 +Ψ1 +Ψ2,

where η is defined in (3.2). We will handle each of these terms differently.
We first consider Ψ0. Assume that ω is such that t0 is not a switching time. By

Lemma 3.2,

1

hn
(f(t0 + hn, ω)− f(t0, ω)) → d

dt
f(t0, ω) = 〈Aφ, u(t0)〉 as n → ∞.

Also observe that for such an ω, we have that 1η(t0+hn,t0)=0(ω) = 1 for n sufficiently
large. Since μ0 and μ1 are continuous distributions, this set of ω’s has probability 1,
and thus

Ψ0 =
1

hn
(f(t0 + hn, ω)− f(t0, ω)) 1η(t0+hn,t0)=0 → 〈Aφ, u(t0)〉 a.s. as n → ∞.

We now apply the bounded convergence theorem to Ψ0. Let n and ω be given. If
η(t0 + hn, t0)(ω) �= 0, then |Ψ0| = 0, trivially. If η(t0 + hn, t0)(ω) = 0, then f(t, ω) is
differentiable in t for all t ∈ (t0, t0 + hn). Therefore, we can employ the mean value
theorem to obtain∣∣∣∣ 1

hn
(f(t0 + hn, ω)− f(t0, ω))

∣∣∣∣ ≤ sup
t∈(t0,t0+hn)

∣∣∣∣ ddtf(t, ω)
∣∣∣∣

= sup
t∈(t0,t0+hn)

|〈Aφ, u(t, ω)〉| ≤ ‖Aφ‖M,
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since ‖u(t)‖ ≤ M by assumption. Thus, |Ψ0| ≤ ‖Aφ‖M almost surely, and so by the
bounded convergence theorem, EΨ0 → E〈Aφ, u(t0)〉 as n → ∞.

To complete the proof, we need only show that Ψ1 and Ψ2 both tend to 0 in mean
as n → ∞. We first work on Ψ1. Observe that

E|Ψ1| = E

∣∣∣∣ 1

hn
(f(t0 + hn, ω)− f(t0, ω)) 1η(t0+hn,t0)=1

∣∣∣∣
≤ 1

hn
ess supω

∣∣(f(t0 + hn, ω)− f(t0, ω))1η(t0+hn,t0)=1

∣∣E (
1η(t0+hn,t0)=1

)
.

It follows from Lemma 3.3 that ess supω
∣∣(f(t0 + hn, ω)− f(t0, ω))1η(t0+hn,t0)=1

∣∣ → 0
as n → ∞. Since by assumption P (η(t0 + hn, t0) = 1) = O(hn), we conclude that
E|Ψ1| → 0 as n → ∞.

Finally, we consider Ψ2. By the assumption that ‖u(t)‖ ≤ M ,

E|Ψ2| = E

∣∣∣∣ 1

hn
(f(t0 + hn, ω)− f(t0, ω)) 1η(t0+hn,t0)≥2

∣∣∣∣
≤ 2‖φ‖M

hn
P (η(t0 + hn, t0) ≥ 2) .

By assumption, P (η(t0 + hn, t0) ≥ 2) = o(hn), and hence E|Ψ2| → 0 as n → ∞.
Therefore,

E〈φ, u(t0 + hn)〉 − E〈φ, u(t0)〉
hn

= Egn → E〈Aφ, u(t0)〉 as n → ∞.

Since hn was an arbitrary sequence tending to 0 and t0 was an arbitrary positive
number, we conclude that d

dtE〈φ, u(t)〉 = E〈Aφ, u(t)〉 for all t > 0.
Since taking the inner product against φ or Aφ are both bounded linear operators

on H , we can exchange expectation with inner product to obtain

d

dt
〈φ,Eu(t)〉 = d

dt
E〈φ, u(t)〉 = E〈Aφ, u(t)〉 = 〈Aφ,Eu(t)〉.

We now show that the mean at large time satisfies the homogeneous PDE.
Theorem 3.4. Let φ ∈ D(A)∩D(B). Then Eu(t) → Eū weakly in H as t → ∞,

where ū is as in Theorem 2.4. Furthermore, Eū satisfies

〈Aφ,Eū〉 = 0.

Remark 7. We will often assume the differential operator and the domain to be
sufficiently regular so that this theorem implies Eū is a C∞ function satisfying the
PDE pointwise.

Proof. Since the switching time distributions, μ0 and μ1, are assumed to be
continuous distributions, they are nonarithmetic. Hence, by Theorem 2.4, Eg(u(t)) →
Eg(ū) as t → ∞ for every continuous and bounded g : H → R. For any η ∈ H , the
function 〈η, ·〉 : H → R is continuous, and since by assumption, ‖u(t)‖ ≤ M a.s., it
follows that

E〈η, u(t)〉 → E〈η, ū〉 as t → ∞.(3.3)

Since taking the inner product against η is a bounded linear operator on H , we can
exchange expectation with the inner product in (3.3) above. Hence, Eu(t) → Eū
weakly in H as t → ∞.
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Of course it follows that in particular

〈φ,Eu(t)〉 → 〈φ,Eū〉 and 〈Aφ,Eu(t)〉 → 〈Aφ,Eū〉 as t → ∞.

By Theorem 3.1, d
dt〈φ,Eu(t)〉 = 〈Aφ,Eu(t)〉. Thus, 〈φ,Eu(t)〉 and d

dt〈φ,Eu(t)〉 both

converge as t → ∞, and so we conclude that d
dt 〈φ,Eu(t)〉 must actually converge to

0. Hence, 〈Aφ,Eū〉 = 0.

4. Examples. In this section, we apply our results from sections 2 and 3 to
the heat equation on the interval [0, L]. We impose an absorbing Dirichlet boundary
condition at x = 0 and a stochastically switching boundary condition at x = L.
In Example 1, we consider switching between a Dirichlet and a Neumann boundary
condition at x = L. In Example 2, we consider switching between two Dirichlet
boundary conditions at x = L. As in section 3, we use E to denote the Bochner
integral of L2[0, L]-valued random variables and not the pointwise expectation of
random functions.

4.1. Example 1: Dirichlet/Neumann switching. Consider the stochastic
process that solves

∂tu = DΔu in (0, L)(4.1)

and at exponentially distributed times switches between the boundary conditions{
u(0, t) = 0,

ux(L, t) = 0
and

{
u(0, t) = 0,

u(L, t) = b > 0.

To cast this problem in the setting of previous sections, we set our Hilbert space
to be L2[0, L] and define the operators

Au := Δu if u ∈ D(A) :=

{
φ ∈ H2(0, L) :

∂φ

∂n
(L) = 0 = φ(0)

}
,

Bu := Δu if u ∈ D(B) := H1
0 (0, L) ∩H2(0, L).

We set c = b
Lx ∈ L2[0, L] and let our switching time distributions, μ0 and μ1, be

exponential with respective rate parameters r0 and r1. Let u(t, ω) be the H-valued
process defined in (2.10) with

Φ1
t (f) = eAtf and Φ0

t (f) = eBt(f − c) + c.(4.2)

We are interested in studying the large time distribution of u(t). By Corollary 2.5,
we have that u(t) converges in distribution as t → ∞ to the L2[0, L]-valued random
variable ū defined in the statement of the corollary. By the definitions of Y0 and Y1

in (2.3), it is immediate that ū is almost surely smooth, and using Proposition 2.3, it
follows that ū(x) ≤ b

Lx almost surely for each x ∈ [0, L]. In this section, we will find
the expectation of ū.

Proposition 4.1. The function Eū is affine with slope(
1 +

ρ

γ
tanh(γ)

)−1
b

L
,(4.3)

where γ = L
√
(r0 + r1)/D and ρ = r0/r1.
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To prove this proposition, we will use the results from both sections 2 and 3. It is
immediate that all of the assumptions in section 3.2 are satisfied, except for one; we
need to check that there exists a deterministic M so that ‖u(t)‖ ≤ M almost surely
for all t ≥ 0. We show that and more in the following lemma.

Lemma 4.2. Under the assumptions of the current section, we have that

‖u(t)‖ ≤ L
(
max{‖u0‖∞, b}

)2

,

where ‖ · ‖∞ denotes the L∞[0, L] norm. Furthermore,

‖Y1‖∞ ≤ b and ‖Y0‖∞ ≤ b almost surely.

Proof. First, note that ‖c‖∞ = ‖ b
Lx‖∞ = b. If f ∈ L2[0, L], then by the maximum

principle, we have that for any t ≥ 0

‖eAtf‖∞ ≤ ‖f‖∞ and ‖eBt(f − c) + c‖∞ ≤ max{b, ‖f‖∞}.(4.4)

Hence, max{‖u(t)‖∞, b} is nonincreasing in t, and so the bound on ‖u(t)‖ is proved.
Since S := {f ∈ L2[0, L] : ‖f‖∞ ≤ b} is a closed set in L2[0, L], (4.4) and

Proposition 2.3 give the desired bounds on ‖Y1‖∞ and ‖Y0‖∞.
As in Corollary 2.5, let ū have the limiting distribution of u(t) as t → ∞. Then by

Theorem 3.4, we have that Eū ∈ L2[0, L] satisfies 〈Δφ,Eū〉 = 0 for each φ ∈ C∞
0 (0, L).

By the regularity of Δ on [0, L], it follows that Eū is not just a weak solution but that
it is actually a smooth classical solution, and hence it is the affine function

(Eū)(x) = sx+ d

for some s, d ∈ R. By Corollary 2.5 of section 2, we have that

sx+ d = pEY1 + (1− p)EY0,(4.5)

where p = r0/(r0 + r1). We will use (4.5) to determine s and d. While both Y0 and
Y1 are almost surely smooth functions, EY0 and EY1 are a priori only elements of
L2[0, L]. It can be shown that EY0 and EY1 are smooth functions, but we will instead
take limits of test functions to avoid evaluating EY0 and EY1 at specific points in
[0, L].

Let {φn}∞n=1 be such that φn ∈ C∞
0 (0, L) and ‖φn‖L1 = 1 for each n and

lim
n→∞〈φn, f〉 = f(0)

for each f ∈ C[0, L]. Since the inner product with φn is a bounded linear functional
in L2[0, L], we can interchange expectation with inner product in (4.5) to obtain

d = lim
n→∞ [〈φn, pEY1 + (1 − p)EY0〉] = lim

n→∞ [pE〈φn, Y1〉+ (1− p)E〈φn, Y0〉] .(4.6)

We want to exchange the limit with the expectations. To do this, first observe that
Y1(x) and Y0(x) are each almost surely continuous functions of x ∈ [0, L] with Y0(0) =
0 = Y1(0) almost surely. Thus,

lim
n→∞〈φn, Y0〉 = 0 and lim

n→∞〈φn, Y1〉 = 0 almost surely.
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Using Lemma 4.2 and the assumption that ‖φn‖L1 = 1 for each n, we have that

|〈φn, Y0〉| ≤ b and |〈φn, Y1〉| ≤ b almost surely.

So we apply the bounded convergence theorem to (4.6) to obtain

d = pE lim
n→∞〈φn, Y1〉+ (1− p)E lim

n→∞〈φn, Y0〉 = 0.(4.7)

We now find the slope s of Eū. Denote the orthonormal eigenbasis of A by {ak}∞k=1

and corresponding eigenvalues by {−αk}∞k=1. Since
∑n

k=1〈ak,EY1〉ak converges to EY1

in L2[0, L] as n → ∞, we have that for any φ ∈ C∞
0 (0, L)

〈φ, sx〉 = 〈φ, pEY1〉+ (1 − p)〈φ,EY0〉 = p
〈
φ,

∞∑
k=1

〈ak,EY1〉ak
〉
+ (1− p)〈φ,EY0〉.

(4.8)

We will need the following lemma, which is an immediate corollary of Proposition
2.2.

Lemma 4.3. Under the assumptions of section 4.1, we have that for each k ∈ N

E[e−αkτ1 ]〈ak,EY0〉 = 〈ak,EY1〉.
Combining this lemma with sx = pEY1+(1−p)EY0 and rearranging terms yields

〈ak,EY1〉 = E[e−αkτ1 ]
s〈ak, x〉

pE[e−αkτ1 ] + (1 − p)
.

Plugging this into (4.8) gives

〈φ, sx〉 = p
〈
φ ,

∞∑
k=1

E[e−αkτ1 ]
s〈ak, x〉

pE[e−αkτ1 ] + (1 − p)
ak

〉
+ (1− p)〈φ,EY0〉.

Solving for s, we find that

s = (1− p)〈φ,EY0〉
(
〈φ, x〉 − p

〈
φ ,

∞∑
k=1

E[e−αkτ1 ]
〈ak, x〉

pE[e−αkτ1 ] + (1− p)
ak

〉)−1

.(4.9)

Let {φn}∞n=1 ∈ C∞
0 (0, L) be such that ‖φn‖L1 = 1 for each n and limn→∞〈φn, f〉 =

f(L) for each f ∈ C[0, L]. We claim that

lim
n→∞〈φn,EY0〉 = b.(4.10)

To see this, first note that Y0 is almost surely smooth and Y0(L) = b almost surely, so
limn→∞〈φn, Y0〉 = b almost surely. Further, the inner product with φn is a bounded
linear functional so 〈φn,EY0〉 = E〈φn, Y0〉. Finally, ‖φn‖L1 = 1 and ‖Y0‖∞ ≤ b
almost surely by Lemma 4.2, so the bounded convergence theorem gives (4.10). Now,
we want to show that

(4.11) lim
n→∞

〈
φn ,

∞∑
k=1

E[e−αkτ1 ]〈ak, x〉
pE[e−αkτ1 ] + (1− p)

ak

〉
=

∞∑
k=1

E[e−αkτ1 ]〈ak, x〉
pE[e−αkτ1 ] + (1− p)

ak(L).
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To do this, we need to show that
∑∞

k=1
E[e−αkτ1 ]〈ak,x〉

pE[e−αkτ1 ]+(1−p)
ak(x) converges uniformly

in x. Note that for each k

ak(x) =

√
2

L
sin

(
(2k − 1)πx

2L

)
and αk =

D(2k − 1)2π2

4L2
.

Hence, E[e−αkτ1 ] ≤ 1 and pEe−αkτ1 + (1− p) ≥ 1− p. Furthermore,

‖ak‖∞ ≤
√

2

L
and 〈ak, x〉 = 4

√
2L3/2

π2

(−1)k+1

(2k − 1)2
.

So for any N ∈ N∥∥∥∥∥
∞∑

k=N

E[e−αkτ1 ]〈ak, x〉
pE[e−αkτ1 ] + (1− p)

ak(x)

∥∥∥∥∥
∞

≤
∞∑

k=N

|〈ak, x〉|
1− p

‖ak(x)‖∞

=

∞∑
k=N

16L

(1− p)π2(2k − 1)2
→ 0 as N → ∞.

Hence, (4.11) is verified, and thus by (4.9) we have that

s =
(1 − p)b

L− p
∑∞

k=1 E[e
−αkτ1 ] 〈ak,x〉

pEe−αkτ1+(1−p)
ak(L)

.

Using the assumptions on τ0, τ1, αk, and ak, and using a series simplification formula
found in Mathematica [45], this becomes

s =

(
1 +

ρ

γ
tanh(γ)

)−1
b

L
,

where γ = L
√
(r0 + r1)/D and ρ = r0/r1. This expectation is much different than

the expectation we obtain when switching between boundary conditions of the same
type in the next example below.

4.2. Example 2: Dirichlet/Dirichlet switching. Consider the stochastic
process that solves

∂tu = DΔu in (0, L)(4.12)

and at exponentially distributed times switches between the boundary conditions{
u(0, t) = 0,

u(L, t) = 0
and

{
u(0, t) = 0,

u(L, t) = b > 0.

To cast this problem in the setting of previous sections, we set our Hilbert space
to be L2[0, L] and define the operator

Bu := Δu if u ∈ D(B) := H1
0 (0, L) ∩H2(0, L).

We set c = b
Lx ∈ L2[0, L]. Let our switching time distributions, μ0 and μ1, be

exponential with respective rate parameters r0 and r1. Let u(t, ω) be the H-valued
process defined in (2.10) with

Φ1
t (f) = eBtf and Φ0

t (f) = eBt(f − c) + c.(4.13)
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We are interested in studying the large time distribution of u(t). As in Example
1, we can use Corollary 2.5 to obtain that u(t) converges in distribution as t → ∞ to
some L2[0, L]-valued random variable ū defined in the statement of the corollary and
use Proposition 2.3 to obtain that ū(x) ≤ b

Lx almost surely for each x ∈ [0, L]. And
as in Example 1, we can use Theorem 3.4 to find the expectation of ū. However, since
this problem switches between boundary conditions of the same type, we will be able
to obtain much more information about ū.

Switching between two boundary conditions of the same type is significantly sim-
pler than switching between boundary conditions of different types. This is because
the two solution operators that we use when switching between boundary conditions
of the same type both employ the same semigroup and thus the same orthonormal
eigenbasis. Hence, we only need to consider the projections of the stochastic process
in this one basis. In this example, the orthonormal eigenbasis and corresponding
eigenvalues for B are for k ∈ N

bk =

√
2

L
sin

(
kπ

L
x

)
and − βk = −D(kπ/L)2.(4.14)

Observe that for each k, the Fourier coefficient uk(t) := 〈bk, u(t)〉 ∈ R is the so-
lution to a one-dimensional ODE with a randomly switching right-hand side. Specif-
ically, if Jt is the jump process defined in (2.9), then in between jumps of Jt, the
process uk(t) satisfies

d

dt
uk = −Jtβkuk − (1− Jt)βk(uk − ck),

where ck := 〈bk, c〉 = (−1)k+1b
√
2L

kπ
.(4.15)

We can use previous results on one-dimensional ODEs with randomly switching
right-hand sides (see [26] or [8]) to determine the marginal distributions of the Fourier
coefficients of the stationary ū. For each k, the marginal distributions of the Fourier
coefficients of Y0 and Y1 are given by

〈bk, Y0〉
ck

∼ Beta

(
r1
βk

+ 1,
r0
βk

)
and

〈bk, Y1〉
ck

∼ Beta

(
r1
βk

,
r0
βk

+ 1

)
.(4.16)

Combining this with Corollary 2.5 gives the marginal distributions of the Fourier
coefficients of ū.

From (4.16) and Corollary 2.5, we obtain

Eū = (1− p)
b

L
x,(4.17)

where p = r0/(r0 + r1). Thus, the expectation of the process at large time is merely
the solution to the time homogeneous PDE with boundary conditions given by the
average of the two boundary conditions that the process switches between.

To further illustrate the usefulness of (4.16), we calculate the L2-variance of ū. It
follows from (4.17) that

E‖ū− Eū‖2 = E‖ū‖2 − L

3
b2(1− p)2.(4.18)
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Now by Corollary 2.5, we have that E‖ū‖2 = pE‖Y1‖2 + (1 − p)E‖Y0‖2. Combining
this with (4.16), we obtain

E‖ū‖2 =

∞∑
k=1

r1(r1 + βk)

(r0 + r1)(r0 + r1 + βk)
c2k.(4.19)

After plugging in our values for βk, bk, and ck in (4.19), using a series simplification
formula found in Mathematica [45], and combining with (4.18), we obtain the L2-
variance

E‖ū− Eū‖2 =
b2Dr1r0(γ coth(γ)− 1)

L(r0 + r1)3
,

where γ = L
√
r0 + r1/D.

While (4.16) is useful, knowing the marginal distributions of the individual Fourier
coefficients of Y0 or Y1 is of course not enough to find their joint distributions, and the
one-dimensional ODE methods used to obtain (4.16) do not give information about
these joint distributions. We can, however, use our machinery developed in section 2
to study these joint distributions.

First, we can use Corollary 2.5 and Proposition 2.2 to obtain joint statistics of
the components of ū. To illustrate, we will calculate E〈Y0, bn〉〈Y0, bm〉. Proposition
2.2 gives

E〈Y0, bn〉〈Y0, bm〉 = E〈eBτ0(eBτ1Y0 − c) + c, bn〉〈eBτ0(eBτ1Y0 − c) + c, bm〉,

where τ0 and τ1 are independent exponential random variables with rates r0 and r1.
After recalling some basic facts about exponential random variables and making some
algebraic manipulations, we obtain that E〈Y0, bn〉〈Y0, bm〉 is equal to

(βm + βn + r1)((βm + βn)(βm + r1)(βn + r1) + (2βmβn + (βm + βn)r1)r0)

(βm + βn)(βm + r1 + r0)(βn + r1 + r0)(βm + βn + r1 + r0)
cmcn.

From this, we can readily compute the covariance of 〈Y0, bn〉 and 〈Y0, bm〉. Other joint
statistics of the Fourier coefficients of Y0 and Y1 (and hence ū by Corollary 2.5) are
found in analogous ways.

Next, we can use Proposition 2.3 to show that ū almost surely has a very specific
structure.

Proposition 4.4. Let bk be as in (4.14), ck as in (4.15), ū be as in Corollary
2.5, and ūk := 〈bk, ū〉. Then for k < n and for almost all ω ∈ Ω,

(
ūk(ω)

ck

)(n/k)2

≤ ūn(ω)

cn
≤ 1−

(
1− ūk(ω)

ck

)(n/k)2

.

Proof. For each k, n ∈ N, let Rk,n be the closed planar region enclosed by the
following two planar curves:

{Pk,n(e
−Btc) : t ≥ 0} and {Pk,n(c− e−Btc) : t ≥ 0}.

Define Sk,n ⊂ L2[0, L] by

Sk,n = {f ∈ L2[0, L] : Pk,n(f) ∈ Rk,n}.
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It is straightforward to check that Sk,n is invariant under Φ0
t and Φ1

t defined in (4.13)
for each k, n ∈ N. Hence, ∩k,nSk,n is invariant under Φ0

t and Φ1
t , and we have by

Proposition 2.3 that Y0 and Y1 (and hence ū by Corollary 2.5) are almost surely
contained in ∩k,nSk,n.

For k < n, observe that Rk,n can be written as

Rk,n =

{
(x, y) ∈ R

2 : 0 ≤ x

ck
≤ 1 and

( x

ck

)(n/k)2

≤ y

cn
≤ 1−

(
1− x

ck

)(n/k)2
}
.

The desired result follows.
Furthermore, we have the following regularity result on ū. Notice that it implies

that as we move to finer and finer spatial scales by taking k → ∞, there is asymptot-
ically only one piece of randomness which determines the fine scale structure.

Proposition 4.5. Let r < 1/2, bk be as in (4.14), ck as in (4.15), Y k
0 := 〈bk, Y0〉,

and Y k
1 := 〈bk, Y1〉. Then for each ω ∈ Ω, there exists an M(ω) so that

1− M(ω)

kr
≤Y k

0 (ω)

ck
≤ 1 +

M(ω)

kr
and − M(ω)

kr
≤ Y k

1 (ω)

ck
≤ M(ω)

kr
.

Proof. For each k, define

Ak :=
{
ω ∈ Ω :

∣∣∣Y k
0 (ω)

ck
− E

Y k
0

ck

∣∣∣ > 1

kr

}
.

By Chebyshev’s inequality and (4.16), we have that

P(Ak) ≤ Var(Y k
0 )

c2k
k2r =

βkr0(βk + r1)

(βk + r0 + r1)2(2βk + r0 + r1)
k2r ∼ k2(r−1) as k → ∞.

Thus, if r < 1/2, then
∑∞

k=1 P(Ak) < ∞, and we conclude by the Borel–Cantelli
lemma that P(Ak infinitely often) = 0. Hence, for almost all ω ∈ Ω, we can choose
an M(ω) so that for all k,

r1 + βk

r0 + r1 + βk
− M(ω)

kr
≤ Y k

0 (ω)

ck
≤ r1 + βk

r0 + r1 + βk
+

M(ω)

kr
.

A similar argument shows that for almost all ω ∈ Ω, we can choose an M(ω) so that
for all k,

r1
r0 + r1 + βk

− M(ω)

kr
≤Y k

1 (ω)

ck
≤ r1

r0 + r1 + βk
+

M(ω)

kr
.

Since βk ∼ k2 as k → ∞, the desired results follows.
We can iterate this proposition to obtain the following result, which shows that

Y k
0 and Y k

1 depend essentially on only one switching time for large k. Note that
we could continue to iterate this proposition to obtain similar bounds. Recall the
definition of each ω ∈ Ω in (2.1).

Corollary 4.6. Let r < 1/2, bk be as in (4.14), ck as in (4.15), Y k
0 := 〈bk, Y0〉,

and Y k
1 := 〈bk, Y1〉. Then for each ω ∈ Ω, there exists an M0(ω) depending only on

{(τk+1
0 , τk1 )}k≥1 and an an M1(ω) depending only on {(τk0 , τk+1

1 )}k≥1 such that

1− e−βkτ
1
0

(M0(ω)

kr
+ 1

)
≤Y k

0 (ω)

ck
≤ 1 + e−βkτ

1
0

(M0(ω)

kr
− 1

)
,

e−βkτ
1
1

(
1− M1(ω)

kr

)
≤Y k

1 (ω)

ck
≤ e−βkτ

1
1

(
1 +

M1(ω)

kr

)
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Proof. Let ω be given. Define σ : ω → ω by

σ(ω) =
(
(τ20 , τ

1
1 ), (τ

3
0 , τ

2
1 ), (τ

4
0 , τ

3
1 ), . . .

)
.

Then by the definition of Y k
0 and Y k

1 , we have that

Y k
0 (ω)

ck
= 1 + e−βkτ

1
0

(Y k
1 (σ(ω))

ck
− 1

)
.

By Proposition 4.5, there exists an M(σ(ω)) so that

−M(σ(ω))

kr
≤ Y k

1 (σ(ω))

ck
≤ M(σ(ω))

kr
.

Thus,

1− e−βkτ
1
0

(M(σ(ω))

kr
+ 1

)
≤ Y k

0 (ω)

ck
≤ 1 + e−βkτ

1
0

(M(σ(ω))

kr
− 1

)
.

The bounds on Y k
1 are proved in a similar way.

4.3. Application to insect physiology. Essentially all insects breathe via a
network of tubes that allows oxygen and carbon dioxide to diffuse to and from their
cells [44]. Air enters and exits this network through valve-like holes (called spiracles) in
the exoskeleton. These spiracles regulate air flow by opening and closing. Surprisingly,
spiracles have three distinct phases of activity, each typically lasting for hours. There
is a completely closed phase, a completely open phase, and a flutter phase in which
the spiracles rapidly open and close [30].

Insect physiologists have proposed at least five major hypotheses to explain the
purpose of this behavior [11]. In order to address these competing hypotheses, phys-
iologists would like to understand how much cellular oxygen uptake decreases as a
result of the spiracles’ closing.

To answer this question, we consider the following model problem. We represent
a tube by the interval [0, L] and model the oxygen concentration at a point x ∈ [0, L]
at time t by the function u(x, t). As diffusion is the primary mechanism for oxygen
movement in the tubes (see [32]), the function u satisfies the heat equation with
some diffusion coefficient D. We impose an absorbing boundary condition at the left
endpoint of the interval to represent cellular oxygen absorption where the tube meets
the insect tissue. The right endpoint represents the spiracle, and since the spiracle
opens and closes, the boundary condition here switches between a no flux boundary
condition, ux(L, t) = 0 (spiracle closed), and a Dirichlet boundary condition, u(L, t) =
b > 0 (spiracle open). We suppose that the spiracle switches from open to closed and
from closed to open with exponential rates r0 and r1, respectively.

Then, the oxygen concentration u(x, t) is the same process described above in
section 4.1. Using the results from that section, if we let ρ = r0/r1 and γ =
L
√
(r0 + r1)/D, then it follows from Proposition 4.1 that the oxygen flux to the

cells at large time is given by (
1 +

ρ

γ
tanh(γ)

)−1
bD

L
.

This formula is noteworthy because it shows that the cellular oxygen uptake not only
depends on the average proportion of time the spiracle is open, but it also depends on
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the overall rate of opening and closing. In particular, note that if we keep the ratio ρ
fixed but let γ become large, then the oxygen uptake approaches bD

L . The biological
meaning is that the insect can have its spiracles open an arbitrarily small proportion
of time and yet receive essentially just as much oxygen as if its spiracles were always
open if they open and close with a sufficiently high frequency. This is important
biologically, because it is almost certainly the correct explanation for fluttering.

Acknowledgment. JCM would like to thank Yuri Bakhtin for stimulating dis-
cussions.
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