RESTRICTION OF THE OSCILLATOR REPRESENTATION TO DUAL PAIRS OF TYPE I

Sabine J. Lang, lang@math.utah.edu, www.math.utah.edu/~lang

Department of Mathematics, University of Utah.

Motivation

Classical problem: Understanding the restriction of a representation of a Lie group to a subgroup. We focus on (g, K)-modules.

- Hard: Analyze $\text{Hom}_{B_k}(\varPi, \pi)$ for π an (k, K)-module.
- Related: Use derived functors, calculate $\text{Ext}^p_{B_k}(\varPi, \pi)$.
- If the restriction is projective: $\text{Ext}^p_{B_k}(\varPi, \pi) = 0 \forall n > 0$.

Main tool: Dual pairs and duality correspondence.

- **Dual pair**: (G, G') in $Sp(2N, R)$ is a dual pair if G and G' are centralizers of each other inside $Sp(2N, R)$.
- **Duality correspondence**: List of the pairs of representations of G and G' appearing in the oscillator representation. Idea: We can use G to compute the restriction to G'.

Goal: Give a criterion for a dual pair (G, G') in $Sp(V)$ so that the restriction of the oscillator representation of $Sp(V)$ to G' is a projective (g', K')-module.

Oscillator representation

- Also called Segal-Shale-Weil representation. Weil representation, harmonic representation, or metaplectic representation, among many other names.
- Start from the oscillator representation \mathcal{O} of the metaplectic group $Sp(2N, R)$, a double cover of the symplectic group.
- Fock model of the oscillator representation: Realization of \mathcal{O} as an $(sp(2N, C), U(\mathcal{N}))$-module. Still called oscillator representation, but denoted by ω.
- K-types of the oscillator representation: Indexed by the weights $(m + \frac{1}{2}, \ldots, \frac{1}{2})$ of $U(\mathcal{N})$, where $m = 0, 1, 2, \ldots$.
- Two irreducible summands: One with the K-types for m even, one with the K-types for m odd.

Set-up

Groups and Lie algebras

- (G, K) real Lie subgroups of $Sp(V)$
- (g, K) dual pair
- G' the smaller member
- g' complexified Lie algebras
- \varPi Cartan subalgebra of g, with corresponding root system Δ
- K, K' maximal compact in G, G'
- \mathfrak{t}, \mathfrak{t}' complexified Lie algebras
- Compact roots Δ_c; roots from \mathfrak{t}
- Non-compact roots $\Delta_n = \Delta - \Delta_c$

Cartan decompositions

- $g = \mathfrak{t} + \mathfrak{p} + \mathfrak{p}'$
- $g' = \mathfrak{t}' + \mathfrak{p}' + \mathfrak{p}''$

M' centralizer of K in $Sp(V)$

- $\{(K, M'), (G, G')\}$ seesaw pair

(g, K)-modules

Complex vector space V with an action of g and an action of K such that

1. for all $v \in V, k \in K, X \in g$,

 $k \cdot (X \cdot v) = (Ad_k(X)) \cdot (k \cdot v)$.
2. V is K'-finite, i.e., for every $v \in V$, the space generated by $K' \cdot v$ is a finite-dimensional vector space.
3. for all $v \in V, Y \in \mathfrak{t}$,

 $\left(\frac{d}{dt} \exp(tv) \cdot v \right) |_{t=0} = Y \cdot v$.

What about projectivity?

Any (K, M')-module V is K'-finite so projective. For Frobenius reciprocity, $\text{Hom}(g, \mathfrak{t}) \otimes_{\mathfrak{t}} V$ is a projective (g, K)-module.

Highest weight modules

- F_k, irreducible \mathfrak{t}-module with highest weight k
- E_k, irreducible g'-module with highest weight k
- $\mathcal{N}(\lambda)$ generalized Verma module $\varPi(\lambda) \otimes_{\mathfrak{t}} E_k$, a $\varPi(\lambda)$-module.

If $N(\lambda)$ is irreducible, then it is equal to E_k.

Duality

For a pair (G, G'): Decompose the oscillator representation ω under the action of G to get

$$
\omega = \bigoplus_{\sigma \in \varPi(G)} \left(\sigma \otimes E_\sigma \right).
$$

- This is a complete decomposition of ω when G is compact.
- When G is not compact, we use a seesaw dual pair containing (G, G') and the maximal compact subgroup K of G.

Duality correspondence

The duality correspondence gives an explicit description of all $\otimes (\sigma, \lambda)$ appearing in ω.

<table>
<thead>
<tr>
<th>(G, G')</th>
<th>(K, M')</th>
<th>(λ)</th>
<th>Stable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(Sp(2N, R), O(p, q))$</td>
<td>$(U(n), U(p, q))$</td>
<td></td>
<td>$n \geq p + q$</td>
</tr>
<tr>
<td>$(O(p, q), Sp(2N, R))$</td>
<td>$(O(p, q), Sp(2N, R))$</td>
<td></td>
<td>$n \geq 2(n - 1)$</td>
</tr>
<tr>
<td>$(O^*(2n), Sp(2N, R))$</td>
<td>$(U(2n), U(2p, 2q))$</td>
<td></td>
<td>$n \geq 2(p + q)$</td>
</tr>
<tr>
<td>$(Sp(p, q), O^*(2n))$</td>
<td>$(Sp(p, O^(2n)) \otimes (Sp(q), O^(2n))$</td>
<td></td>
<td>$n \geq n - 1$</td>
</tr>
<tr>
<td>$(Sp(2n, C), O(p, C))$</td>
<td>$(Sp(p, O^*(2n))$</td>
<td></td>
<td>$n \geq p - 1$</td>
</tr>
<tr>
<td>$(O(p, C), Sp(2n, C))$</td>
<td>$(O(p, Sp(4n, R))$</td>
<td></td>
<td>$n \geq 4n$</td>
</tr>
<tr>
<td>$(U(r, s), O(p, q))$</td>
<td>$(U(\mathcal{U}, U(p, q)) \otimes (U(s), U(p, q))$</td>
<td></td>
<td>$r, s \geq p + q$</td>
</tr>
</tbody>
</table>

Acknowledgements

This work was partially supported by the National Science Foundation under Grant DMS-1901745. The author acknowledges the support of the AWM for presenting at the AWM Poster Session at JMM 2020.

Bibliography

