Compound Interest	Exact Half-Life
$A=P \cdot\left(1+\frac{A P R}{n}\right)^{n Y}$	$T_{h}=-\frac{\log _{10} 2}{\log _{10}(1+r)}$
Logarithm Property	Exact Doubling Time
$\log _{10} x^{y}=y \cdot \log _{10} x$	$T_{d}=\frac{\log _{10} 2}{\log _{10}(1+r)}$
Exponential Growth/Decay Using \boldsymbol{r}	Exponential Growth Using $\boldsymbol{T}_{\boldsymbol{d}}$
$Q=Q_{0} \cdot(1+r)^{t}$	$Q=Q_{0} \cdot 2^{t / T_{d}}$
Linear Equation	Slope of a Line
$y=m \cdot x+b$	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$Q=Q_{0} \cdot 0.5^{t / T_{h}}$	$S A=2 \pi r^{2}+2 \pi r h$
Exponential Decay Using $\boldsymbol{T}_{\boldsymbol{h}}$	Surface Area of a Cylinder
Surface Area of a Sphere of a Circle	
$S A=4 \pi r^{2}$	$A=\pi r^{2}$

Please remember to use a negative r for an exponential decay!

