Compound Interest	Exact Half-Life
$A = P \cdot \left(1 + \frac{APR}{n}\right)^{nY}$	$T_h = -\frac{log_{10}2}{log_{10}(1+r)}$
Logarithm Property	Exact Doubling Time
$log_{10}x^{y} = y \cdot log_{10}x$	$T_d = \frac{log_{10}2}{log_{10}(1+r)}$
Exponential Growth/Decay Using r	Exponential Growth Using $\boldsymbol{T_d}$
$Q = Q_0 \cdot (1+r)^t$	$Q = Q_0 \cdot 2^{t/T_d}$
Linear Equation	Slope of a Line
$y = m \cdot x + b$	$m = \frac{y_2 - y_1}{x_2 - x_1}$
Exponential Decay Using T_h	Surface Area of a Cylinder
$Q = Q_0 \cdot 0.5^{t/T_h}$	$SA = 2\pi r^2 + 2\pi rh$
Surface Area of a Sphere	Area of a Circle
$SA = 4\pi r^2$	$A = \pi r^2$

Please remember to use a **negative** *r* for an exponential decay!