
  

  

Testing the L picture and IFS fractal generation
Maple 13 commands

     In order to make fractals with iterated function systems  it is nice to have a test procedure to make 
sure you have picked your affine maps correctly (and to help you adjust them later if necessary.) The 
procedure TESTMAP below, takes a list of affine functions as its input, and the result is a mapping −L 
picture like the ones in the fractal blueprints in the directory http://www.math.utah.
edu/~korevaar/fractals.
     Before trying to generate fractal examples you should load the subroutines in this file, by placing the 
cursor in any command fields you will need, and pressing the <enter> (<return>) key.  Alternately, you 
can choose Edit/Execute/Worksheet from the menu toolbar, and commands will be entered in document 
order.

restart:with(plots):Digits:=4:

#every time you start a new fractal save and close your

#previous fractals work.  Then return to a fresh copy of this 

document

#and restart;  otherwise you may overwhelm

#Maple and crash!  Also, save frequently.

TESTMAP:=proc(funclist)   #this procedure lets you test a list 

of

                   #functions in your iterated function system

  local num,#the number of functions

        i,  #dummy index

        F,  #current function in list

        S,  #corners of unit square

        L,  #corners of letter L

        Sq, #unit square

        Llet,  #letter L

        AS, #transf of square corners

        ASq,#transf of square

        AL, #transf of L corners

        ALlet,  #transf of letter L

        Pics;  #a list of pictures

S:=[[0,0],[0,1],[1,1] ,[1,0]];

L:=[[.1,.9],[.1,.65],[.2,.65],[.2,.675],[.125,.675],[.125,.9]]:

Sq:=polygonplot(S,transparency=.9): #polygonplot connects the 

dots!

Llet:=polygonplot(L,transparency=1):

display({Sq,Llet});

   num:=nops(funclist):

   for i from 1 to num do

     F:=funclist[i]:  #select ith map



  

  

  

  

  

     AS[i]:=map(F,S):

     AL[i]:=map(F,L):

     ASq[i]:=polygonplot(AS[i],transparency=.9):

     ALlet[i]:=polygonplot(AL[i],transparency=.9):

       #a plot of the transformed square and letter:

     Pics[i]:=display({ASq[i],ALlet[i]}):

   od:

#finally, display the unit square and all its images:

display({Sq, seq(Pics[i],i=1..num)},scaling=constrained,

title=‘fractal template‘);

end:

        
Here is the standard affine map, which encodes
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or, in the equivalent matrix representation:
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AFFINE1:=proc(X,a,b,c,d,e,f)

RETURN(evalf([a*X[1]+c*X[2]+e,

             b*X[1]+d*X[2]+f]));

end:

Example 1:  Encode the affine transformations which express (an isosceles) Sierpinski’s triangle as
a union of shrunken images: 

f1:=P−>AFFINE1(P,.5,0,0,.5,0,0);

      #shrink by .5 and don’t translate 

f2:=P−>AFFINE1(P,.5,0,0,.5,.5,0);

      #same shrink, and translate 0.5 to the right

f3:=P−>AFFINE1(P,.5,0,0,.5,.25,.5);

      #shrink, then displace by [.25,.5]

TESTMAP([f1,f2,f3]);  #Check your transformations!!
     Since the template is correct, we may proceed with the iteration.  Start with a single point.  If you 
have "n" contraction mappings, then each iteration multiplies the number of points in your current set by
the number "n".  Your number "k" of iterations should keep the total number of points n^k under 300,
000, or Maple may stall out on you.

S:={[0,0]}:#initial set consisting of one point

3^9; #good to keep point numbers well below 300,000,

     #so as not to strain Maple’s memory
     Based on the computation above I will do nine iterations below:



  

  

  

  

  

  

  

  

  

  

for i from 1 to 9 do

S1:=map(f1,S);

S2:=map(f2,S);

S3:=map(f3,S);

S:=‘union‘(S1,S2,S3);

od:

pointplot(S,symbol=point,scaling=constrained,

    title=‘Sierpinski triangle‘);

     Now if you copy and modify this file you can create as many contraction functions as you want, and 
see what fractal they generate.  Alternately, you can use the L−picture template to reconstruct 
contractions for any interesting fractal you’d like to make!use these procedures to test a template and 
generate a fractal.  Every time you restart you will need to return to this window to re−enter the 
procedures you need. Unfortunately the "point" resolution size in Maple 13 is pretty large, so pictures 
tend to overstate the actual fractal.  (Maple 8 was actually better in this regard.)

Example 2:  From the book "Fractals − Endlessly repeated geometric figures", by Hans Lauwerier, page 
95.  This system generates a bush−like fractal, with only two generating functions!

f1:=P−>AFFINE1(P,.6,.6,−.6,.6,0,0);

    #A rotation (by Pi/4), and rescaling

f2:=P−>AFFINE1(P,.53,0,0,.53,1,0);

    #pure scaling by .53, with translation

TESTMAP([f1,f2]);

216;

S:={[0,0]}:

for i from 1 to 16 do

S1:=map(f1,S):

S2:=map(f2,S):

S:=‘union‘(S1,S2):

od:

pointplot(S,symbol=point,scaling=constrained,

axes=none,   title=‘Figure 5.16 page 95 Lauwerier‘);

Printing:
     The resulting fractal pictures can be printed or exported as .jpg (or other) files to other documents, 
using menu options at the top of the Maple 13 Window.  In the Math Department, there seem to be 
issues in printing fractal pictures with a lot of points, such as those above.  One way around that is to 
click on the fractal image, so that the "Plot" menu item at the top of the Maple window becomes active. 
You can then export the fractal picture as a .jpg file, using the "export" button at the bottom of the "Plot"
options.  You can open the .jpg file from your browser, and then print from there.



  

  

Testing for contractions:  In order for the set map iterations to have a limit fractal, each of the 
transformations must be a contraction.  Precisely, there must be some number strictly less than one so 
that distances between image points are always no more than this number times the corresponding 
distances between the domain points.  Here is a procedure which will test a transformation to see if it is a
contraction, in case you’re not sure.  It relies on the spectral theorem for symmetric matrices, and is 
related to singular value decomposition for transformations.

with(linalg):  #old linear algebra library

STRETCHTEST:=proc(fcn) #test affine map for contraction

local Atemp,  #matrix of affine transformation

      temp; #hold eigenvector information of the transpose

           #of Atemp times Atemp − the square root of

           #the largest eigenvalue

           #is the largest stretch factor −

           #you want this to be less than one

Atemp:=transpose

   (matrix([fcn([1.,0])−fcn([0,0]),fcn([0,1])−fcn([0,0])]));

temp:=eigenvectors(transpose(Atemp)&*Atemp);

  if (temp[2]=2 and temp[1]>=1) #uniform stretch, factor >=1

     then return(print("expands uniformly, by " , temp[1] , "in 

all directions − not contraction!"));

  end if;

  if (temp[2]=2 and temp[1]<1) #uniform stretch, factor <1

     then return(print("contracts uniformly, by ", temp[1] , "in

all directions − contraction!"));

  end if;

  if (temp[1][1]>temp[2][1] and temp[1][1]>=1) 

      then return(print ("not a Euclidean contraction: maximum 

stretch factor" , sqrt(temp[1][1]) , "in direction" , temp[1][3]

[1] ));  

  end if;

  if (temp[1][1]<temp[2][1] and temp[2][1]>=1) 

      then returnt(print ("not a Euclidean contraction: maximum 

stretch factor" , sqrt(temp[2][1]) , "in direction" , temp[2][3]

[1] ));

  end if;

  if (temp[1][1]<1 and temp[2][1]<1)

              then print ("contraction!");

  end if;

end:



  

  

  

  

  

  

  

Example:

f1:=P−>AFFINE1(P,.7,.8,.8,−.7,.6,3);

f2:=P−>AFFINE1(P,.5,−.6,.2,.3,.8,.5);

f3:=P−>AFFINE1(P,1.5,0,1,.5,.25,.5);

f4:=P−>AFFINE1(P,.7,.2,−.2,.7,.6,3);

     

TESTMAP([f1,f2,f3,f4]);

STRETCHTEST(f1);

STRETCHTEST(f2);

STRETCHTEST(f3);

STRETCHTEST(f4);


