Math 2250 Syllabus **Linear Algebra and Differential Equations**

This course treats topics in linear algebra and differential equations, using matrix and linear algebra to understand linear differential equations and systems of linear differential equations.

Text: Differential Equations and Linear Algebra, 3rd Edition, by Edwards and Penney, chapters 1-7, 9-10.

Course outline:

Week 1 Week 2	1.1-1.3 1.4-1.5; EP3.7	Differential equations and modeling, anti-differentiation, slope fields Separable and linear differential equations; Initial value problems and slope fields; Electrical circuits.
Week 3	2.1-2.3	Applications to populations, velocity models; equilibria and stability for autonomous differential equations
Week 4	2.4-2.6, 3.1- 3.3	Numerical methods; matrices, linear systems, reduced row echelon form.
Week 5	3.3-3.5	Matrix operations, algebra, and inverses
Week 6	3.6, 4.1	Determinants, review, introduction to linear combinations
Week 7	4.1-4.4	Linear combinations, independence, bases, dimension for vector spaces
Week 8	5.1-5.3	Linear differential equations of 2 nd order and higher order
Week 9	5.3-5.5	Constant coefficient linear differential equations: homogeneous and non-homogeneous problems; mechanical applications
Week 10	5.5-5.6, EP3.7 10.1- 10.2	Non-homogeneous differential equations; mechanical and circuit applications; introduction to Laplace transform.
Week 11	10.3-10.5	Laplace transform and inverse transform, applications to differential equations; unit step functions; review
Week 12	EP7.6, 10.5, 6.1-6.2, 7.1	Impulse functions; eigenvalues and eigenvectors for matrices; introduction to systems of differential equations
Week 13	7.2-7.4	First order systems and input-output models; second order spring systems of differential equations
Week 14	7.4; 9.1-9.3	Nonlinear systems of differential equations; linearization and stability at equilibria; phase plane analysis
Week 15	9.3-9.4	Nonlinear population and mechanical systems phase plane analysis; course review.

Course format: There are four 50-minute lecture presentations per week (or equivalent), and one 50-minute section meeting. Section meetings focus on weekly homework and concepts. Additional software-based project work is drawn from the suggestions in the text. Students are evaluated on the basis of regular homework and/or quizzes based on that homework; project work; 2-3 midterm exams administered during their section meetings; and an in-class final exam administered during the University scheduled time.

<u>Current Math 2250-4 home page</u> <u>Current Math 2250 coordinating page</u>