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ACCESS 2011 − RSA
Friday June 17

Our Plan Today:
To help explain the RSA public−key encryption method in more detail we will do the example worked 
out in the Tom Davis "Cryptography" notes, page 13−14.  The hand−drawn Alice and Bob diagram 
posted on our ACCESS page illustrates this example too.  Davis’ example uses small numbers and a one−
letter message, and Maple will do all of our computations.  I believe this will make the algorithm more 
clear to you.  The explanation of the Algorithm on page 6−7 of the Rivest−Shamir−Adleman paper is also 
a very concise outline, as is appendix J of "The Code Book." You could also consult Wikipedia.

After we digest Davis’ example we will try  somewhat larger prime numbers, to help prepare you for the 
part of your group project in which you send yourselves (and me) encoded messages .   In your actual 
project you will implement a medium−sized version of an RSA cipher system (big enough to send short 
messages, but not really big enough to be secure).  You will also incorporate the "secure signature" 
feature, which we will discuss using Alice and Bob.  

The number theory we’ve talked about and the connection to RSA cryptography is often taught in our
Number Theory course, Math 4400.  It is covered in more depth and with other cryptosystems in Math 
5405, Cryptography, Codes, and Computational Number Theory.  These are advanced courses, so I 
would expect that a lot of what we’ve talked about this week has been challenging.  Still, some students 
take Math 4400 fairly early in their undergraduate careers since it does not have very many prerequisites 
beyond algebra and the ability to reason mathematically.  As far as ACCESS goes, we  hope that you’re  
enjoying the magic hidden in modular arithmetic; that you are pleasantly surprised that this "abstract" 
mathematics turns out to be so practical; and that you are appreciating the roles of discovery, experiment
and deduction in mathematics as well as in science.

I will make you do a lot of your own typing in Part I below, so that you can continue learning MAPLE 
and how to fix the common errors which users make.  Therefore, in the file you download, many of the 
Maple commands which you see in the hardcopy are gone.

We will continue using Maple 13.  If you save your work in one session, do some more work in a later 
higher number version of Maple, and then try to reopen the most recently saved work in Maple 13 you 
may be out of luck − Maple is sometimes not backwards compatible.  In the past there have also been 
issues in opening Maple documents on a MAC if they were created on a P.C., or vise verse.  Hopefully 
no such problems will occur to any of you this year while you are completing your project work.

Part I 
The Davis Example:
In this example Bob is going to send a message to Alice.   I will follow Davis’ numbering of the steps on 
pages 13−14.  We are also going to use his table on page 9 to convert letters to numbers.

1)   Alice must create her public key, for Bob to use when he encripts his message to her.  So she picks 
two prime numbers, see page 13:  (p=23 and q=41).  Define p and q using Maple.

restart:  
# clears all Maple memory − good to do if you start over and want to clear out all old 
definitions.

p 23;  # insert math prompts [  from the menu bar
 q 41;  # make definitions with :=, NOT with =.
              # enter multi−line commands using shift return

p := 23

q := 41
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2)  Alice defines her modulus to be the product of p and q.  This will be the first piece of her public key. 
N p q;  # there is no implied multiplication in Maple − use the "star" key .

N := 943

3a)  Alice privately computes the auxillary modulus N2:=(p−1)*(q−1), which she needs to find her 
encoding and decoding powers.  No one else will ever see or use this number.  First she finds a number  
e which is relatively prime to N2; this will be the public encoding power and she will tell it to the world. 
A good e must be relatively prime to (p−1)*(q−1), so that Alice will be able to find a decoding power d.  
So we check the gcd:  

N2 p 1 q 1 ;
 e 7;

N2 := 880

e := 7

gcd e, N2 ;  # must be 1 for e to have a multiplicative inverse mod N2.
1

ifactor N2 ;  # compute the integer factorization of N2 into primes.
 ifactor e ;   #could also compare prime factorizations to see that 
                    # e and N2 are relatively prime
                    # try factoring some random bigger numbers − this is the step that
                    #  "can’t" be done for products of big enough primes.

2 4 5  11

7

7 )  Alice privately finds her "secret" decoding power.  Since she does this step sooner than Davis says, 
we will too.  Since e is relatively prime to N2= p 1 q 1  it has a multiplicative inverse 
d, mod p 1 q 1 .  We talked about how to find the multiplicative inverse using the Euclidean 
algorithm.  Luckily for us, Maple has a subroutine which does this step for us.  By the Euler−Fermat 
Theorem, the result of which I told you yesterday (but which we didn’t have time to prove), this d will be
the decoding power. MAGIC!

d e 1  mod N2;  # you could’ve done this with the Euclidean algorithm!
d := 503

   

3b)  Now Alice is ready to receive messages.  She yells her public encryption key from the rooftops:  My
modulus is N=943.  My encryption power is e=7.  If you want to send me a message use the encrypt 
function:

encrypt x xe mod N;
     # if you defined e and N above, then their values
     # will be used for the encrypt function.  This command
     # is Maplese for encrypt(x)=xe mod N.

encrypt:= x xe mod N

4)  The message which Bob wishes to send Alice is the letter Y.  He consults Davis’ table on page 9.  
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The number that corresponds to Y is 35. 
M 35;

M := 35

5) Bob encrypts the message using Alice’s public key:
C encryptM ;  #either of these would work for these small numbers
 C Me mod N;

C := 545

C := 545

6)  Bob sends the number 545 to Alice.
8)  Alice decodes the message using her decoding power d, which she found in step 7, a while ago.

decrypt y yd mod N;
decrypt:= y yd mod N

decryptC ;
35

Alice consults the table, sees that 35 corresponds to Y, and understands what Bob has sent.  WE DID 
IT!   Except with Alice’s puny primes our message pieces can only be one letter long, so what we’ve got 
is really just a monoalphabetic substitution cipher. 
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Part II: 
A more practical size.

     In your project everyone will pick primes bigger than 10^(30), so that your moduli will be bigger 
than 10^(60).  This is still not big enough to be secure, but you will be able to send messages with up to 
60 digits (so 30 letter/punctuation symbols) per packet.  (And so that decoding doesn’t get too tedious for
all groups,  you will be limited to a total message at most 3 packets.)  
     For now we will pick primes bigger than 10^6, and use message packets of 6 characters.  This means 
our message packets can have up to 12 digits per packet, which will be less than our modulus N, since N 
will be greater than 10^12.   

restart:   #this will clear all old definitions.
           #It’s a good idea to restart when you begin
           #new work − of course you might need to 
           #go back and re−enter some old commands that
           #you need again.  (Repetition is good pedagogy.)
randomize();#this will tell the "random" number generator 
           #where to start. the "seed" it generates is based
           #on the system clock, so if you all enter this command at
           #the same time you might get the same "random" numbers.
           #That would be bad.  See help windows to see how to
           #make your random numbers unlike your classmates’.
              

1308266888

rand();    #random number generator,
           #default range is between 0 and 12 digits 

78764175863

bigger:=rand(10^50..10^51):  #random number between 10^50 and 

10^51

bigger();
452096000792115163506410962854976564074928416996694

For now, (but not later when you’re doing your project)
good:=rand(10^6..10^7):
good();

2824174

for i from 1 to 100 do   #try 100 times to find a right−sized prime
    x1:=good():
   if 
    isprime(x1)=true  #check if number is prime
    then print(x1);     #if it is, let’s see it
  end if;
end do:  
  

7508797

1448449

8824603
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4468367

5305771

7096091

7368083

7824119

9207641

It’s unlikely your numbers agree with mine.  (Well, in truth if you all start the generator at the same 
place, you’ll all get the same so−called random numbers.)  You may chose your p and q using your list!  
We are repeating the process we worked out in the tiny example.)

p:= 7508797;  #I copied and pasted these with my mouse 
q:= 8824603 ;
N:= p*q ;           #my modulus

p := 7508797

q := 8824603

N := 66262152532591

To see that a system of this size is not secure, try the ifactor command again.  This is the command that 
would fail if we had chosen primes of length 200 instead of 12, and that’s the reason RSA is secure when
you use huge primes.

ifactor(N); #stands for "integer factorization"
7508797 8824603

3)  Find an encoding power e
N2:=(p−1)*(q−1);  #auxillary modulus

N2 := 66262136199192

#find encryption power which has a multiplicative inverse
#mod N2:
for i from 1 to 10 do
   x2:=good();
   if gcd(x2,N2)=1
     then print(x2);
   fi
end do:

3905701

5180939

e:= 3905701;
gcd(e,N2);   #re−check relative prime

e := 3905701

1

7) Get decoding power:

d e 1 mod N2;
 d e mod N2;

d := 47669382874021

1
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Technical Point:  When we get to step 6, or certainly step 8, Maple will complain when we try to 
compute large powers of large numbers, so we have to lead it through this modular computation in 
smaller steps. The procedure below does the trick. It’s like what we’ve been doing in class, where we 
computed powers in modular arithmetic by reducing back to the residue numbers at intermediate steps, 
without affecting the final residue number. Davis outlines this method in his notes, except using powers 
of 2 rather than powers of 10.  We’ve been using similar trickery in class.  Here’s the idea: Suppose we 
want to compute

783 565  mod N
in small steps.  We write

783 565= 783 500  783 60  783 5   mod N

 = 783 100 5
 783 10 6

 783 5  mod N.
By successive multiplication and reduction to the residue value, the procedure below makes a table of 
the residue values of  783, 783 10 , 783 100 , 783 1000, etc., i.e of residue values for the powers of 
783, where the power is itself a power of 10. We then multiply these table residue values and reduce 
mod N, the appropriate number of times, as indicated in the decomposition above.  Thus we recover the 
residue value of 783 565  without every having to deal with integers which are greater than  N2.  
(Actually I was sloppy, and my intermediate numbers could get as large as N10, but for our N−values this
won’t be a problem.)
    Here is the procedure, which uses a subprocedure called "digit" which uses truncation to pick off 
digits from numbers:

digit:=(x,n)−>trunc(x/10^n)−10*trunc(x/10^(n+1));

digit := x, n trunc
x

10n
10 trunc

x

10n 1

5

1

3

encrypt:= proc(M1,E,N3)  #message, encipher power,modulus
                #we assume all M1’s, E’s have at most 105 digits
    local i,j,  #indices
          L1,   #list of succesive 10th powers of M1
          ans;  #answer
  #this do loop makes the list of powers of M1 described above:
  L1[1]:=M1  mod N3;
  for i from 2 to 105 do
     L1[i]:=L1[i−1]^10 mod N3;
  end do: 
  #now multiply table entries to get the residue value of the
  #encryption power function:
  ans:=1:    #initialize answer
  for j from 1 to 105 do
     ans:=ans*(L1[j]^digit(E,j−1)) mod N3;
   end do:
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RETURN(ans);
end:
          

         
Let’s check!!!

M:=12345678910;
M := 12345678910

secret:=encrypt(M,e,N);
secret:= 29393409027937

encrypt(secret,d,N);
  #decryption is just 
  #encryption in modular arithmetic, with the decryption power.
  

12345678910

YES!!!

What would happen above if you started with an M which was larger than your modulus N?  (It would 
not be good − try it!)

Part III
An Actual Message

We Use Davis’ Table on page 9 to encrypt  " I’m Dizzy".  We will need two packets to keep our numbers
in the residue range.

M1:=196749101445;  #plaintext (well, plainnumber) packets
M2:=62626163;

M1 := 196749101445

M2 := 62626163

C1:=encrypt(M1,e,N);  #coded packets
C2:=encrypt(M2,e,N);

C1 := 34296836549856

C2 := 6087114015740

encrypt(C1,d,N);  #decryption is encryption with
encrypt(C2,d,N);  #a different power, should give back originals

196749101445

62626163



Part IV
Your work!

For your project you will need the digit and encryption procedures − you can either work in this 
document or create a new window and copy and paste those procedures into it, into a Maple math field.  
Think about how you want to organize your work and name your various packets as you go through the 
process of creating your message packet, your "plainnumber" signature, its decryption and the two 
packets you make by subdividing this decrypted signature.  You will be encrypting these various packets
with different functions for the two groups you send them to.  You will also be receiving messages from 
these two groups, each of which will need to be decrypted with your decryption function − and then you 
will need to glue the last two signature packets back together and encrypt them with the senders’ 
functions to recover each groups’ signature.  This last step is where the thorniest problems show up − 
although they actually have arisen much earlier in the process.


