
1

Powers in Modular Arithmetic, and RSA Public Key
Cryptography

Lecture notes for Access 2009, by Erin Chamberlain and Nick Korevaar.

In our examples so far we’ve been assigning numbers to each letter of a plaintext and
then using modular arithmetic to construct a cipher, number by number (or letter by letter).
In practice this just amounts to a (letter) substitution cipher, and so can be broken easily
with frequency analysis. What we will do for RSA cryptography (and what has been done
in cryptography for a long time before RSA) is to make packets consisting of lots of letters,
and encrypt those. In RSA we will use HUGE moduli N = pq, which are products of two
different prime numbers, and break messages into packets whose lengths fall into the residue
range of N . Then we’ll encrypt each packet using a power function, and hope to decrypt
it with another power function. For example, if N has at least 13 digits (i.e. N > 1012),
then you can use the table on page 9 of Tom Davis’ notes, Cryptography, to convert any
6-character expression into a number in the residue range of N , since each character is
represented with two digits.

Example 1. Use the Davis table on page 9 of his notes to convert the two word sentence
Hello there! into two number packets, each of which is less than 1012.

Remark 1. If you use the encryption function f(x) ≡ x+a mod N , which corresponds to
Caesar shifts, anyone who understands clock arithmetic can deduce the decryption function
g(x) ≡ x− a mod N immediately. Similarly, if you specify the encryption function f(x) ≡
ax mod N , for gcd(a,N) = 1, then ACCESS students and other hard-working smart people
could use the Euclidean algorithm to quickly find a multiplicative inverse b of a mod N , in
order to find the decryption function g(x) ≡ bx mod N . So neither of these examples is a
one-way function, even with big message packets.

We’ll understand the power problem for N = pq by first understanding it for N = p, a
prime. Let’s experiment:

Example 2. Let N = 11. Let our candidate encryption function be f(x) ≡ x2 mod 11,
where we take the domain and range to be the residue numbers {0, 1, 2, . . . , 10}. Complete
the table below and explain why this function won’t work to encrypt the numbers in our
residue range.

x 0 1 2 3 4 5 6 7 8 9 10

x2 0 1 4 9 5

Example 3. Keeping N = 11, show that the function f(x) ≡ x3 mod 11 does encrypt
(permute) the residue numbers:

x 0 1 2 3 4 5 6 7 8 9 10

x3 0 1 8



2

Example 4. We might hope that if our encryption function is f(x) ≡ xe mod N , then our
decryption function is g(x) ≡ xd mod N , for some power d. For the encryption function in
the previous example e = 3. We shall now deduce a possible value for the decryption power
d: Since f(2) = 8 mod 11, we want g(8) = 2, i.e. 8d ≡ 2 mod 11. Compute successive
powers of 8 until you are able to solve this equation for d. (Hint: d = 7.)

Exercise 1. But we need to check that the decryption power d = 7 works for every x in
our residue range! Let group number x check that this is so, for the residue number x.
Groups 1 and 2 should pick any residue number we’ve not already checked, since x = 1 is
immediate and we just checked x = 2. Be clever to minimize your computing!

Exercise 2. Since RSA cryptography uses moduli N = pq, where p and q are (HUGE)
prime numbers, we’ll experiment with small prime numbers p = 3, q = 5, N = 15, and use
the mod 15 table of powers below to figure out good and bad encryption powers e. (A
good encryption function permutes the residue numbers, so that it has an inverse decryption
function.) First, you will have to fill in rows 6 and 7 of the table!

Power table, mod 15

power → 1 2 3 4 5 6 7 8 9 10

residue

0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

2 2 4 8 1 2 4 8 1 2 4

3 3 9 12 6 3 9 12 6 3 9

4 4 1 4 1 4 1 4 1 4 1

5 5 10 5 10 5 10 5 10 5 10

6

7

8 8 4 2 1 8 4 2 1 8 4

9 9 6 9 6 9 6 9 6 9 6

10 10 10 10 10 10 10 10 10 10 10

11 11 1 11 1 11 1 11 1 11 1

12 12 9 3 6 12 9 3 6 12 9

13 13 4 7 1 13 4 7 1 13 4

14 14 1 14 1 14 1 14 1 14 1



3

Exercise 3. f(x) ≡ x3 mod 15 is a good encryption function. What part of the power
table confirms this fact? Find a power d so that g(x) ≡ xd mod 15 is the decryption
function for f(x). Use the power table to check your work.

When Decryption Powers Exist, and Finding Them

We’ve been doing a lot of experimentation with modular arithmetic, which is a great
way to get ideas about what might be true. Number theory has been a favorite for many fa-
mous mathematicians, and so some of their names are attached to the following important
theorems. Perhaps the mathematicians were led to these theorems by their own experi-
mentation. These results from two centuries ago turn out to be the underpinning of RSA
cryptography.

Theorem 1 (Fermat’s Little Theorem). If p is a prime and if 0 < a < p is a residue
number, then ap−1 ≡ 1 mod p.

Proof. Pick any non-zero residue a as above, and consider the corresponding row of the mod
p multiplication table. (You can make this less abstract by using the mod 7 table as an
example, see below.) Since a has a multiplicative inverse mod p, ax ≡ ay only when x ≡ y.
(Why?) Therefore, as in our previous discussion of multiplication tables, the residues across
the row, namely the residues of

1a, 2a, 3a, ..., (p − 1)a

must all be different, i.e. a permuation of the non-zero residues 1, 2, ..., (p − 1). Thus the
product of all these terms satisfies

(1a)(2a)...(p − 1)a ≡ (1)(2)...(p − 1) mod p,

ap−1(1)(2)...(p − 1) ≡ (1)(2)...(p − 1) mod p.

Multiply both sides of this equation by the multiplicative inverses of 2, 3, ...(p − 1), i.e.
cancel the term (2)(3)...(p − 1) from both sides of the equation. Deduce

ap−1 ≡ 1 mod p.



4

Example 5. Here’s how to illustrate Little Fermat concretely, using p = 7. Start with the
mod 7 multiplication table, without the zero row and column:

mod 7 multiplication table

× 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

Take any row, say the row for a = 3. The entries going across are the residues for

(3)(1), (3)(2), (3)(3), (3)(4), (3)(5), (3)(6)

and they are just a permuation of the original non-zero residues. Thus, taking the product
of the entries in this row, mod 7, we have

366! ≡ 6! mod 7.

6! has a multiplicative inverse mod 7, since its a product of numbers with multiplicative
inverses. Multiplying both sides of the equation by this number, we deduce a special case
of Little Fermat, for a = 3, p = 7:

36 ≡ 1 mod 7.

Theorem 2. (power decryption when N = p is prime) if f(x) ≡ xe mod p, and d is a
multiplicative inverse of e, mod p − 1, then g(x) ≡ xd mod p is the inverse function of f

(on the set of residue numbers).

Proof. Notice that if x = 0 the result holds. Thus we can assume x = a, a non-zero residue.
Since e and d are multiplicative inverses mod p − 1, we have

ed = 1 + m(p − 1)

for some counting number m. Thus

g(f(a)) ≡ g(ae) ≡ (ae)d ≡ aed

≡ a1+m(p−1) ≡ a1(ap−1)m ≡ a(1m) ≡ a,

by Fermat’s Little Theorem! This shows that g is the inverse function to f .



5

Example 6. For p = 11 and e = 3, find d using this Corollary. Does your answer agree
with the earlier example, where we found acceptable d by brute force?

We can use the Little Fermat Theorem to understand power decryption when the mod-
ulus is a product of two different primes, and this is the basis of RSA cryptography. You
will be able to understand the proof below, but it may seem like it was pulled out of a hat.
Actually, I pulled it out of Wikipedia. In an actual semester-long course on number theory,
this result would be understood in a broader context, and would seem more natural.

Theorem 3. (RSA decryption, when N = pq) Let N = pq be a product of two distinct
prime numbers. Define N2 := (p−1)(q−1). Let e be relatively prime to N2. Then f(x) ≡ xe

mod N has inverse function g(x) ≡ xd mod N , where d is the multiplicative inverse of e,
mod N2.

Proof. If the hypotheses of the Theorem hold, then the claimed encryption and decryption
powers e, d are related by

ed = 1 + m(p − 1)(q − 1)

for some counting number m. If we can show that

xed ≡ x mod N

for all x ∈ Z, then it will follow that the modular power functions f(x), g(x) are inverses of
each other, since their domain and range are defined to be the residue numbers mod N .

The trick is to show xed −x is a multiple of p and also a multiple of q. Since p and q are
different primes, the prime factorization of xed − x must then include a factor of pq = N ,
so that xed − x ≡ 0 mod N as desired.

We show xed − x is a multiple of p: If x is a multiple of p then this is automatic.
Otherwise, gcd(x, p) = 1, and the residue of x mod p is a non-zero number a. By Little
Fermat,

xp−1 ≡ ap−1 ≡ 1 mod p.

Thus

xed = x1+m(p−1)(q−1) = x1(xp−1)m(q−1) ≡ x(1)m(q−1) ≡ x mod p.

Thus in both cases, xed − x is a multiple of p. By repeating the argument above and
interchanging the roles of p and q, we deduce that xed − x is also a multiple of q. Thus
xed − x is a multiple of pq, since p and q are prime and have no common factors. In other
words, xed ≡ x mod N as claimed.



6

Example 7. For p = 3 and q = 5 we have N = 15, N2 = 8. For the encryption power
e = 3, compare the decryption power d guaranteed by this corollary to the power(s) we
found earlier from the mod 15 power table.

Exercise 4. Let p = 23, q = 41, so that N = 943. Pick encryption power e = 7. Find the
auxillary modulus N2 and a decryption power d.


