
1Clock Arithmetic continuedLecture notes for Access 2009 by Erin Chamberlain and Nick Korevaar.Number theory refresherHere are some words which will occur in our discussion today.De�nition 1. An integer b is divisible by an integer a, not zero, if there is an integer xsuch that b = ax, and we write ajb. If b is not divisible by a, we write a 6 jb.Example 1. 14 is divisible by 7 because 14 = 7� 2, and we write 7j14.De�nition 2. The integer a is a common divisor of b and c if ajb and ajc. Since thereis a �nite number of common divisors, the greatest one is called the greatest commondivisor of b and c and is denoted by (b; c) or by gcd(b; c).Example 2. 6 is a common divisor of 24 and 120, but 24 is their greatest common divisor,i.e., (24; 120) = 24.De�nition 3. We say that a and b are relatively prime or coprime if (a; b) = 1.De�nition 4. An integer p > 1 is called a prime number or a prime if there is no divisord of p satisfying 1 < d < p. If an integer a > 1 is not a prime, it is a composite number.De�nition 5. The integer a is a common multiple of b and c if bja and cja. The smallestcommon multiple of b and c is called the least common multiple and is denoted bylcm(b; c).Example 3. (60)(84) = 5040 is a common multiple of 60 and 84, but (12)(7)(5) = 420 istheir least common multiple; lcm(60; 84) = 420. Using prime factorizations it is easy to seethat lcm(b; c) = bcgcd(b; c) :In our example with b = 60 and c = 84, we have gcd(60; 84) = 12, so lcm(60; 84) =(12)(7)(5) = (60)(84)12 .



2Functions in clock arithmeticsExercise 1. In the example from yesterday we used f(x) = x + 4 to encrypt a message.What function would we use to decrypt our message?
Let's look at the addition table for modulus 5:+ 0 1 2 3 40 0 1 2 3 41 1 2 3 4 02 2 3 4 0 13 3 4 0 1 24 4 0 1 2 3Note that if n were large it would not be pro�table to make a huge addition table.Exercise 2. Suppose we had a function f(x) = x+ 2 mod 5. Compute the following:1. f(3)2. f(1)3. f(2)Exercise 3. Now suppose we are given that g(x) = x� 2 mod 5. (The inverse or "undo"function of f(x).) Compute the following, and compare this to Exercise 2.1. g(0)2. g(3)3. g(4)



3Exercise 4. Can you think of another formula which would give you g(x), the inversefunction of f(x)?
There are some subtleties happening with g(x). How did we �nd g(x)? Simple, we justneeded to �nd out how to undo whatever happened in f(x). Since we added 2 to our valuein f(x), then we would just need to subtract 2 (or add -2) to get g(x). What we are reallydoing is �nding the additive inverse for 2. If we have a number a, then its additive inverseis a number b such that a+ b � 0. Now we can look at our addition table above to see whatthe additive inverse of 2 mod 5 is, and we see it is 3, or rather any number � 3 mod 5.Hence another form of g(x) could be g(x) � x + 3 mod 5 or even g(x) � x + 28 mod 5.Check for yourself that we get the same values.Exercise 5. Find the residue numbers which are additive inverses of the following:1. 3 mod 39
2. 18 mod 56
3. �4 mod 20

Example 4. Solve for x in the equation 3� x � 7 mod 8.Solution. We solve this equation the same way we would solve 3�x = 7. First we subtract 3from both sides to get �x � 4 mod 8. Now multiply by �1 to get x � �4 mod 8. Finallywe use our clock arguement to �nd the positive equivalent value for �4 mod 8 which is 4mod 8. Therefore x � 4 mod 8.Exercise 6. Solve 7� x � 21 mod 24.
Here is the multiplication table for modulo 5.



4 � 0 1 2 3 40 0 0 0 0 01 0 1 2 3 42 0 2 4 1 33 0 3 1 4 24 0 4 3 2 1Exercise 7. Let f(x) = 2x mod 5. Compute the following:1. f(3)2. f(1)3. f(2)What is the inverse of this function? Is it g(x) = x2? If it were then g(1) = 12 which isnot possible. So how do we �nd g(x)?To answer this question we need to �nd the multiplicative inverse of 2. If we have anumber a, its multiplicative inverse is a number c such that ac � 1. Now we can lookat our multiplication table to �nd the multiplicative inverse of 2, which we see is 3.Exercise 8. Compute the following with g(x) = 3x mod 5 and compare this problem withthe previous exercise.1. g(1)2. g(2)3. g(4)Exercise 9. Using the same table as yesterday (repeated below), encrypt the message"ATTACK AT DAWN" using the function f(x) = 5x mod 26A B C D E F G H I J K L M N O P Q R S T U V W X Y Z0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25



5Exercise 10. Can you �nd the inverse function needed to decrypt your message fromexercise 9?



6Finding Multiplicative InversesExample 5. Make a multiplication table for mod 15, and then make a table of multiplicativeinverses.Here are the tables:� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 142 0 2 4 6 8 10 12 14 1 3 5 7 9 11 133 0 3 6 9 12 0 3 6 9 12 0 3 6 9 124 0 4 8 12 1 5 9 13 2 6 10 14 3 7 115 0 5 10 0 5 10 0 5 10 0 5 10 0 5 106 0 6 12 3 9 0 6 12 3 9 0 6 12 3 978910 0 10 5 0 10 5 0 10 5 0 10 5 0 10 511 0 11 7 3 14 10 6 2 13 9 5 1 12 8 412 0 12 9 6 3 0 12 9 6 3 0 12 9 6 313 0 13 11 9 7 5 3 1 14 12 10 8 6 4 214 0 14 13 12 11 10 9 8 7 6 5 4 3 2 1a b01234567891011121314We notice that not all of the values have inverses.Exercise 11. List the numbers which have inverses. How do these numbers relate to 15?



7Exercise 12. List the numbers which do not have inverses. How do these numbers relateto 15?
Exercise 13. What do you notice about row a when a has a multiplicative inverse, ascompared to when it doesn't? In rows where the pattern of products repeats, how manytimes does it repeat, and when does the �rst repetition occur?

Here's one way to answer some of these exercises:Lemma 1. Let a and n be integers with 0 < a < n. Then a has a multiplicative inversemod n if and only if row a of the residue multiplication table mod n is a permutation(rearrangement) of the residue numbers 0; 1; 2; : : : n � 1. Furthermore, a does not have amultiplicative inverse mod n if and only if az � 0 mod n for some 0 < z < n.Proof. If a has a multiplicative inverse mod n, then both sides of the equation ax � aymod n may be multiplied by a�1 to deduce x � y mod n. Thus, if a�1 exists, then theresidue entries of row a of the multiplication table are all distinct (di�erent). Since thereare n residue values and n entries in the row, we deduce that row a is a permutation ofthe n residue values. Conversely, if row a is a permutation of the residue values, then thenumber "1" occurs somewhere in row a, say in column x. This means x is the multiplicativeinverse of a. Thus we have shown that a�1 exists if and only if row a is a permutation ofthe residue values.If a does not have a multiplicative inverse, then the number 1 does not appear in row aof the multiplication table. Since there are n� 1 residue values besides 1, and n entries to�ll, at least two of the entries of row a must be the same, say ax � ay, with 0 � x < y < n.Thus 0 � ay�ax � a(y�x); i.e. the entry in column z = y�x of row a is zero. Conversely,if az � 0 for some 0 < z < n, then since column 0 and column z of row a in the tableboth have entries 0, row a is not a permutation of the residue numbers, so by the previousparagraph we deduce a�1 does not exist.Theorem 1. Let a and n be integers with 0 < a < n. Then a has a multiplicative inversemod n if and only if (a; n) = 1.Proof. We will check the logically equivalent statement that a does not have a multiplicativeinverse if and only if (a; n) = b > 1: If a does not have a multiplicative inverse then pickthe smallest 0 < z < n so that az � 0 mod n, which we can do by applying the precedinglemma. Thus az is a multiple of n, and is in fact the least common multiple of a and



8n since by choosing the smallest positive z for which az � 0 mod n we are choosing thesmallest postive z so that az has n as a factor. Since z < n we also have az < an. Butaz = lcm(a; n) = an(a;n) , so it must be that (a; n) > 1.Conversely, if (a; n) = b > 1, then for z = nb we have az = lcm(a; n) so az � 0 mod n,i.e. column z of row a of the multiplication table is zero, so a�1 does not exist by theprevious lemma.Notice that although our theorem tells us when multiplicative inverses exist in clockarithmetic, it doesn't give us an e�cient algorithm to compute them if the modulus islarge. In the next few examples we keep the modulus relatively small. In the next sectionwe'll see how to �nd multiplicative inverses when the modulus is large.Note that primes are special because all nonzero numbers mod p have a multiplicativeinverse.Example 6. Find the multiplicative inverse of 8 mod 11.Solution. We have already seen that we can �nd the multiplicative inverse by making amultiplication table, but I don't think we want to make that big of a table. Also we couldtry to �nd the inverse by just going through the multiples of 8. The third method is to useEuclid's Algorithm, which we will discuss next. Just for fun though, let's try to �gure thisone out. We need a number b such that 8b � 1 mod 11. The numbers congruent to 1 mod11 are 12, 23, 34, 45, 56, 67, 78, etc. Of those we need to �nd the one that is divisible by8, which is 56 = 8� 7. Thus the multiplicative inverse of 8 mod 11 is 7.Exercise 14. Solve 8x � 3 mod 11.
Exercise 15. Find 5�1 mod 26.
Exercise 16. Using your answer from exercise 15, decrypt your message you made inexercise 9.



9Information for these notes came from previous lecture notes of Jim Carlson, and de�-nitions and theorems came from An Introduction to The Theory of Numbers, �fth edition,by Niven, Zuckerman, and Montgomery.


