
ACCESS 2009 - RSA
Friday June 19

Our Plan Today:
We’ll finish yesterday’s number theory notes, which explain how to find decryption powers from 
encryption powers, in modular arithmetic. Then to help explain the RSA public-key encryption method 
we will do the example worked out in the Tom Davis "Cryptography" notes, page 13-14.  The 
hand-drawn Alice and Bob diagram illustrates this example too.  Davis’ example uses small numbers 
and a one-letter message, and Maple will do all of our computations.  I believe this will make the 
algorithm more clear to you.  The explanation of the Algorithm on page 6-7 of the 
Rivest-Shamir-Adleman paper is also a very concise outline, as is appendix J of "The Code Book." You 
could also consult Wikipedia.

After we digest Davis’ example we will try  somewhat larger prime numbers, to help prepare you for the 
part of your group project in which you send yourselves (and me) encoded messages .   In your actual 
project you will implement a medium-sized version of an RSA cipher system (big enough to send short 
messages, but not really big enough to be secure).  You will also incorporate the "secure signature" 
feature, which we will discuss using Alice and Bob.  

The number theory we’ve talked about, and the relation to RSA cryptography,  is usually taught in our 
number theory course, Math 4400.  This is a senior level course, so I would expect that some of what 
we’ve talked about has been challenging.  Still, some students take Math 4400 fairly early in their 
undergraduate careers since it does not have very many prerequisites beyond algebra and the ability to 
reason mathematically.  As far as ACCESS goes, we  hope that you’re  enjoying the magic hidden in 
modular arithmetic, that you are pleasantly surprised that this "abstract" mathematics turns out to be so 
practical, and that you are appreciating that discovery, experiment and deduction have roles in 
mathematics just as they do in science.

I will make you do a lot of your own typing in Part I below, so that you can begin learning MAPLE and 
how to fix the common errors which users make.  Therefore, in the file you download, many of the 
Maple commands which you see in the hardcopy are gone.

We will use Maple 8, and I recommend you avoid Maple 10 or higher in this project.  In Maple 8, once 
commands from one Maple worksheet are entered into memory they are known in all the other Maple 
worksheets you open in your Maple desktop.  This lets you organize different pieces of your 
computation in different windows.  Maple 10 keeps different memory for each opened worksheet so you 
must put everything into a single worksheet.  Also,  if you’re working on Maple 10 and plan to return to 
Maple 8 you must save your file specially in "classic" mode, so that Maple 8 can recognize it.

Part I 
The Davis Example:
In this example Bob is going to send a message to Alice.   I will follow Davis’ numbering of the steps on 
pages 13-14.  We are also going to use his table on page 9 to convert letters to numbers.


1)   Alice must create her public key, for Bob to use when he encripts his message to her.  So she picks 
two prime numbers, see page 13:  (p=23 and q=41).  Define p and q using Maple.
> restart:  #clears all Maple memory - good to do if you start over.
> p:=23;

q:=41;  # insert prompts [> with the menu bar.




        # make definitions with :=, NOT with =.

        # comment lines begin with #

        # if you want more than one line of math commands

        # before executing them, use  <shift><return>

 := p 23

 := q 41

2)  Alice defines her modulus to be the product of p and q.  This will be the first piece of her public key. 

> N:=p*q;

 := N 943

3a)  Alice privately computes the auxillary modulus N2:=(p-1)*(q-1), which is related to Euler’s 
theorem, with which Alice will pick her encoding and decoding powers.  No one else will ever see or use 
this number.  First she finds a number  e which is relatively prime to N2; this will be the public encoding 
power and she will tell it to the world.  A good e must be relatively prime to (p-1)*(q-1), so that Alice 
will be able to find a decoding power d.  So we check the gcd:  
> N2:=(p-1)*(q-1);

e:=7;


 := N2 880

 := e 7
> gcd(N2,e);  #must be 1 for e to have mult. inv. mod N2

1
> ifactor(N2);

ifactor(e);   #could also check gcd with prime factorizations - 
this

              #is what can’t be done in reasonable time for huge

              #composite numbers

( ) 2 4 ( ) 5 ( ) 11

( ) 7

7 )  Alice privately finds her "secret" decoding power.  Since she does this step sooner than Davis says, 
we will too.  Since e is relatively prime to N2=(p-1)*(q-1) it has a multiplicative inverse d, mod 
(p-1)*(q-1).  (We talked about how to find the multiplicative inverse using the Euclidean algorithm.  
Luckily for us, Maple has a subroutine which does this step for us.)  By the Euler-FermatTheorem, 
which was the page of our notes we didn’t quite get to go through carefully yesterday, :(, this d will be 
the decoding power.  I wouldn’t be surprised if you’re still amazed and confused by this fact, but like I 
tell my students in every class, confusion is the first step to understanding.  I’ll be happy to talk with 
anyone who wants to understand this part of the math better....
    The first command is having Maple do the Euclidean algorithm method of finding multiplicative 
inverses, so you won’t have to do this by hand!!!!
> isolve(e*z+N2*y=1);  #"integer solve" ... Maple already knows e

                     # and N2, so is finding integer solutions for

                     #x and z.  This is what we did by hand with

                     #the Euclidean algorithm. As we learned, then




                     #z is a muliplicative

                     #inverse of 7, mod N2.

{ },=y +3 7 _Z1 =z − −377 880 _Z1
> d:=-377 mod N2;  # get the residue value for d, 

                 #  by mousing in the -377

 := d 503

3b)  Now Alice is ready to receive messages.  She yells from the rooftops:  My modulus is N=943.  My 
encryption power is e=7.  If you want to send me a message use the encrypt function:
> encrypt:=x->x^e mod N;

     #  if you defined e and N above,

     #then their values will be used for the encrypt function.

     #this command is Maplese for encrypt(x)=x^e mode N.

     #so this is the syntax for defining elementary functions.

 := encrypt →x modxe N

Note:  In class and in the picture notes I made for you we use the letter E for the encrypt function. 

4)  The message which Bob wishes to send Alice is the letter Y.  He consults Davis’ table on page 9.  
The number that corresponds to Y is 35. 
> M:=35;

 := M 35

5) Bob encrypts the message using Alice’s public key: 
> C:=encrypt(M);  #either of these works for small modulus

C:=M^e mod N;

 := C 545

 := C 545

6)  Bob sends the number 545 to Alice.
8)  Alice decodes the message using her decoding power d, which she found in step 7, a while ago.

> decrypt:=y->y^d mod N;

 := decrypt →y modyd N
> decrypt(C);

C^d mod N;  #either of these work for small modulus

35

35

Alice consults the table, sees that 35 corresponds to Y, and understands what Bob has sent.  WE DID IT!  
Except with Alice’s puny primes our message pieces can only be one letter long, so what we’ve got is 
really no better than a substitution cipher. 



Part II: 
A more practical size.

     In your project everyone will pick primes bigger than 10^50, so that your moduli will be bigger than 
10^(100).  This is still not big enough to be secure, but you will be able to send messages with up to 50 
characters per packet.  (And so that decoding doesn’t get too tedious for all groups,  you will be limited 
to a total message at most 2 packets.)  
     For now we will pick primes bigger than 10^6, and use message packets of 6 characters.  This means 
our message packets will have up to 12 digits per packet, which will be less than our modulus N, since N 
will be greater than 10^12.   

> restart:   #this will clear all old definitions.

           #It’s a good idea to restart when you begin

           #new work - of course you might need to 

           #go back and re-enter some old commands that

           #you need again.  (Repetition is good pedagogy.)

> randomize();#this will tell the "random" number generator 

           #where to start. the "seed" it generates is based

           #on the system clock, so if you all enter this command 
at

           #the same time you might get the same "random" numbers.

           #That would be bad.  See help windows to see how to

           #make your random numbers unlike your classmates’.

              

1213303535
> rand();    #random number generator,

           #default range is between 0 and 12 digits 

430211989080
> bigger:=rand(10^50..10^51):  #random number between 10^50 and 
10^51

bigger();

152664283907507598759778242023722704660594591547692
For now, (but not later)
> good:=rand(10^6..10^7):

good();

1316412
> for i from 1 to 100 do   #try 100 times

    x1:=good():

   if 

    isprime(x1)=true  #check if number is prime

    then print(x1);     #if it is, let’s see it

  end if;

od:  

  

3119681

3906431



1432583

5660279

5207963

8903819

1353449

9351113

1511017
It’s unlikely your numbers agree with mine.  (Well, in truth if you all start the generator at the same 
place, you’ll all get the same so-called random numbers.)  You may chose your p and q using your list!  
We are repeating the process we worked out in the tiny example.)
> p:= 3119681  ;  #I got these with my mouse, by 

             #highlighting with left mouse,

             #clicking cursor, and pasting with

             #middle mouse (at least on our system)  

q:= 3906431 ;

N:= p*q ;           #our modulus

 := p 3119681

 := q 3906431

 := N 12186818568511
To see that a system of this size is not secure, try the following command.  This is the command that 
would fail if we had chosen primes of length 200 instead of 12, and that’s the reason RSA is secure 
when you use huge primes.
> ifactor(N);

( ) 3119681 ( ) 3906431
3)  Find an encoding power e
> N2:=(p-1)*(q-1);

 := N2 12186811542400

> #find encryption power which has a multiplicative inverse

#mod N2:

for i from 1 to 10 do

   x2:=good();

   if gcd(x2,N2)=1

     then print(x2);

   fi

od:

5101573

5096527

4281273
> e:=3906431;

gcd(e,N2);   #check relative prime


 := e 3906431

1



7) Get decoding power
> isolve(e*z + y*N2 =1);

   #find decryption power, which is "z" above

{ },=y +2059440 3906431 _Z1 =z − −6424792134529 12186811542400 _Z1
> d:= -6424792134529 mod N2; #need a positive power-

    #this will put it into the N2 residue range

    #use the mouse to copy and paste big numbers

 := d 5762019407871
Technical Point:  When we get to step 6, or certainly step 8, Maple will complain when we try to 
compute large powers of large numbers, so we have to lead it through this modular computation in 
smaller steps. The procedure below does the trick. It’s analagous to method Davis outlines in his notes, 
except using powers of 10 rather than powers of 2.  We’ve been using similar trickery in class.  Here’s 
the idea: Suppose we want to compute

[ ]783 565  mod N
in small steps.  We write

=[ ]783 565 [ ][ ]783 500 [ ][ ]783 60 [ ][ ]783 5   mod N

= [ ][ ]783 100
5

[ ][ ]783 10
6

[ ][ ]783 5  mod N.
By successive multiplication and reduction to the residue value, we then make a table of the residue 

values of  783, [ ]783 10 , [ ]783 100 , [ ]783 1000, etc., i.e of residue values for the powers of 783, where the 
power is itself a power of 10. We then multiply these table residue values and reduce mod N, the 
appropriate number of times, as indicated in the decomposition above.  Thus we recover the residue 

value of [ ]783 565  without every having to deal with integers which are greater than  N2.  (Actually I was 

sloppy, and my intermediate numbers could get as large as N10, but for our N-values this won’t be a 
problem.)
    Here is the procedure, which uses a subprocedure to pick off digits from numbers:
> digit:=(x,n)->trunc(x/10^n)-10*trunc(x/10^(n+1));

 := digit →( ),x n −






trunc

x

10n 10








trunc

x

10
( )+1 n

> digit(123.56,-1);

digit(123.56,2);

digit(123.56,0);

   #check how digit picks off the digits corresponding

   #to powers of 10

5

1

3
> encrypt:= proc(M1,E,N3)  #message, encipher power,modulus

                #we assume all M1’s, E’s have at most 105 digits

    local i,j,  #indices

          L1,   #list of succesive 10th powers of M1

          ans;  #answer

  #this do loop makes the list of powers of M1 described above:

  L1[1]:=M1  mod N3;

  for i from 2 to 105 do




     L1[i]:=L1[i-1]^10 mod N3;

  od: 

  #now multiply table entries to get the residue value of the

  #encryption power function:

  ans:=1:    #initialize answer

  for j from 1 to 105 do

     ans:=ans*(L1[j]^digit(E,j-1)) mod N3;

   od:



RETURN(ans);

end:

          

         

Let’s check!!!
> M:=12345678910;

 := M 12345678910
> secret:=encrypt(M,e,N);

 := secret 4489330458615
> encrypt(secret,d,N);

  #decryption is just 

  #encryption in modular arithmetic, with a different power.

  

12345678910
YES!!!

What would happen above if you started with an M which was larger than your modulus N?  (It would 
not be good.)

Part III

An Actual Message

We Use Davis’ Table on page 9 to encrypt  " I’m Dizzy".  We will need two packets to keep our 
numbers in the residue range.
> M1:=196749101445;

M2:=62626163;

 := M1 196749101445

 := M2 62626163
> C1:=encrypt(M1,e,N);

C2:=encrypt(M2,e,N);

> encrypt(C1,d,N);  #decryption is encryption with

encrypt(C2,d,N);  #a different power!

> 


