
1

Powers in Modular Arithmetic, and RSA Public Key
Cryptography

Lecture notes for Access 2008

It was a long time from Mary Queen of Scots and substitution ciphers until the end
of the 1900’s. Cryptography underwent the evolutionary and revolutionary changes which
Simon Singh chronicals in The Code Book. By the mid 1970’s there were amazingly com-
plicated encryption algorithms which could be made essentially unbreakable. For example,
in Chapter 6, Singh mentions the Lucifer cipher, a special version of which is known as the
Data Encryption Standard, or DES.

However, no matter how convoluted the the encryption methods were, and how fre-
quently the keys were changed for security reasons, all methods required that both parties
to the message possessed the key for encryption and decryption.... and it was just assumed,
because this had always been the case, that if you possessed the method to encrypt a mes-
sage, then this was equivalent after perhaps a little work, to also knowing how to decrypt
it. By the mid 1970’s there were thousands of couriers flying all over the world, whose only
job was to transfer cipher keys.

As the the precursor to the internet, namely the ARPAnet, was beginning to grow,
Whitfield Diffie and Martin Hellman, as well as others, realized the huge potential for
electronic transactions, together with the need for assured security. Diffie-Hellman were
perhaps the first to realize that there was an entirely new way to think of cryptography;
that perhaps there were encryption keys which you could let everyone in the world know,
but for which you could never the less keep secret the decryption key. This would solve
the problem of key distribution, since if you wanted to receive secure messages you could
tell the world how to encrypt anthing they wanted to send you, but only you would know
the decryption key which could stay safely at home. Diffie-Hellman called such encryption
keys, “trapdoor”, or “one way” functions, because knowing the encryption function did not
automatically allow clever people to work out the decryption function. In 1977, Ronald
Rivest, Adi Shamir and Leonard Adleman described one of the easiest one-way functions,
and the resulting method of public key cryptography is called RSA, in their honor. As
we shall see, this method relies on number theory and modular arithmetic, and will use
everything we’ve been talking about up to this point.

Remark 1. In our examples so far we’ve been assigning numbers to each letter of a plaintext
and then using modular arithmetic to construct a cipher, number by number (or letter by
letter). In practice this just amounts to a (letter) substitution cipher, and so can be broken
easily with frequency analysis. What we will do for RSA cryptography (and what has been
done in cryptography for a long time before RSA) is to make packets consisting of lots of
letters, and encrypt those. In RSA we will use HUGE moduli N = pq, which are products
of two different prime numbers, and break messages into packets whose lengths fall into the
residue range of N . Then we’ll encrypt each packet back into the residue range by using a
power function mod N . We’ll hope to decrypt it with another power function.

2

As an example of what we mean by “packets”, if N has at least 13 digits (i.e. N > 1012),
then you can use the table on page 9 of Tom Davis’ notes, Cryptography, to convert any
6-character expression into a number in the residue range of N , since each character is
represented with two digits.

Example 1. Use the Davis table on page 9 of his notes to convert the two word sentence
Hello there! into two number packets, each of which is less than 1012.

Remark 2. If you use the encryption function f(x) ≡ x+a mod N , which corresponds to
Caesar shifts, anyone can deduce the decryption function g(x) ≡ x−a mod N after at most
N guesses to find the value of a. (Think of the example above, with N > 1012.) Similarly,
if you specify the encryption function f(x) ≡ ax mod N , for gcd(a,N) = 1, then ACCESS
students and other hard-working smart people could use the Euclidean algorithm to quickly
find a multiplicative inverse b of a mod N , in order to find the decryption function g(x) ≡ bx
mod N . So neither of these examples is a one-way function, even with big message packets.
It will turns out that for long enough packets (e.g longer than 200 digits), suitable modular
power encryption IS believed to be a one-way function.

We’ll understand the power problem for N = pq by first understanding it for N = p, a
prime. Let’s experiment:

Example 2. Let N = 11. Let our candidate encryption function be f(x) ≡ x2 mod 11,
where we take the domain and range to be the residue numbers {0, 1, 2, . . . , 10}. Complete
the table below and explain why this function won’t work to encrypt the numbers in our
residue range.

x 0 1 2 3 4 5 6 7 8 9 10

x2 0 1 4 9 5

Example 3. Keeping N = 11, show that the function f(x) ≡ x3 mod 11 does encrypt
(permute) the residue numbers:

x 0 1 2 3 4 5 6 7 8 9 10

x3 0 1 8

Example 4. We might hope that if our encryption function is f(x) ≡ xe mod N , then our
decryption function is g(x) ≡ xd mod N , for some power d. For the encryption function in
the previous example e = 3. We shall now deduce a possible value for the decryption power
d: Since f(2) = 8 mod 11, we want g(8) = 2, i.e. 8d ≡ 2 mod 11. Compute successive
powers of 8 until you are able to solve this equation for d. (Hint: d = 7.)

3

Exercise 1. But we need to check that the decryption power d = 7 works for every x in
our residue range! Let group number x check that this is so, for the residue number x + 1,
except that group 1 gets to double check x = 3 along with group 2, since we just did x = 2.
Be clever to minimize your computing!

Exercise 2. Since RSA cryptography uses moduli N = pq, where p and q are (HUGE)
prime numbers, we’ll experiment with small prime numbers p = 3, q = 5, N = 15, and use
the mod 15 table of powers below to figure out good and bad encryption powers e. (A
good encryption function permutes the residue numbers, so that it has an inverse decryption
function.) First, you will have to fill in rows 6 and 7 of the table!

Power table, mod 15

power → 1 2 3 4 5 6 7 8 9 10

residue

0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

2 2 4 8 1 2 4 8 1 2 4

3 3 9 12 6 3 9 12 6 3 9

4 4 1 4 1 4 1 4 1 4 1

5 5 10 5 10 5 10 5 10 5 10

6

7

8 8 4 2 1 8 4 2 1 8 4

9 9 6 9 6 9 6 9 6 9 6

10 10 10 10 10 10 10 10 10 10 10

11 11 1 11 1 11 1 11 1 11 1

12 12 9 3 6 12 9 3 6 12 9

13 13 4 7 1 13 4 7 1 13 4

14 14 1 14 1 14 1 14 1 14 1

Exercise 3. f(x) ≡ x3 mod 15 is a good encryption function. What part of the power
table confirms this fact? Find a power d so that g(x) ≡ xd mod 15 is the decryption
function for f(x). Use the power table to check your work.

4

When decryption powers exist, and how to find them

We’ve been doing a lot of experimentation with modular arithmetic, which is a really
good way to get ideas about what might be true. Number theory has been a favorite
for many great mathematicians, and so some of their names are attached to the following
important theorems, which maybe they were also led to by experimentation. These results
from two centuries ago turn out to be the underpinning of RSA cryptography.

Theorem 1 (Fermat’s Little Theorem). If p is a prime and if 0 < a < p is a residue
number, then ap−1 ≡ 1 mod p. (And, for any integer b, bp ≡ b mod p.)

Proof. Pick any non-zero residue a as above, and consider the corresponding row of the
mod p multiplication table. (You can make this less abstract by using the mod 7 table as
an example, see below.) Since a has a multiplicative inverse mod p, ax ≡ ay only when
x ≡ y. (Why?) Therefore the residues across the row, namely the numbers

1a, 2a, 3a, ..., (p − 1)a

must all be different, i.e. a permuation of the non-zero residues 1, 2, ..., (p − 1). Thus the
product of all these terms satisfies

(1a)(2a)...(p − 1)a ≡ (1)(2)...(p − 1) mod p,

ap−1(1)(2)...(p − 1) ≡ (1)(2)...(p − 1) mod p.

Multiply both sides of this equation by the multiplicative inverses of 2, 3, ...(p − 1), i.e.
cancel the term (2)(3)...(p − 1) from both sides of the equation. Deduce

ap−1 ≡ 1 mod p.

Finally, if b is an integer and p/b then bp ≡ b ≡ 0 mod p. If p is not a factor of b then write
a for its non-zero residue mod p. In this case bp ≡ ap ≡ aap−1 ≡ a ≡ b mod p.

Example 5. Here’s how to illustrate Little Fermat concretely, using p = 7. Start with the
mod 7 multiplication table, without the zero row and column:

× 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

Take any row, say the row for a = 3. The entries going across are the residues for

(3)(1), (3)(2), (3)(3), (3)(4), (3)(5), (3)(6)

and they are just a permuation of the original non-zero residues. Thus, taking the product
of the entries in this row, mod 7, we have

366! ≡ 6! mod 7.

5

6! has a multiplicative inverse mod 7, since it’s a product of numbers with multiplicative
inverses. Multiplying both sides of the equation by this number, we deduce a special case
of Little Fermat, for a = 3, p = 7:

36 ≡ 1 mod 7.

Corollary 1. if f(x) ≡ xe mod p, and d is a multiplicative inverse of e, mod p − 1, then
g(x) ≡ xd mod p is the inverse function of f (on the set of residue numbers).

Proof. Notice that if x = 0 the result holds. Thus we can assume x = a, a non-zero residue.
Since e and d are multiplicative inverses mod p − 1, we have

ed = 1 + m(p − 1)

for some counting number m. Thus

g(f(a)) ≡ g(ae) ≡ (ae)d ≡ aed

≡ a1+m(p−1) ≡ a1(ap−1)m ≡ a(1m) ≡ a mod p,

by Fermat’s Little Theorem! This shows that g is the inverse function to f .

Example 6. For p = 11 and e = 3, find d using this Corollary. Does your answer agree
with the earlier example, where we found acceptable d by brute force?

Theorem 2 (Euler-Fermat Theorem). If N = pq is a product of two prime numbers,
define N2 = (p − 1)(q − 1). If a is any residue number mod N , then

aN2+1 ≡ a mod N.

Proof. The real Euler-Fermat Theorem is more general than what is stated above, and
part of a much bigger story. (You can read about it in a good number theory book,
or Wikipedia). I found the following “magic” proof of the special case stated above by
browsing the Wikipedia topic “RSA Cryptography”! Let a be any residue number mod N ,
with N = pq as above. Use the usual laws of exponents to write

aN2+1 = a(p−1)(q−1)+1 = apq−p−q+2 = a(q−1)pa−q+2 = (a(q−1))pa−q+2.

But Fermat’s Little Theorem says

(a(q−1))p ≡ a(q−1) mod p.

Substitute this into the the exponent equation and in interpret mod p:

aN2+1 ≡ (a(q−1))pa−q+2 ≡ a(q−1)a−q+2 ≡ aq−1−q+2 ≡ a mod p.

6

Actually, there’s one comment we need to make about the computation above: If a is
divisible by p then it doesn’t have a multiplicative inverse mod p and the term a−q+2

which has a negative exponent doesn’t make sense. But, luckily in this case aN2+1 ≡ a
mod p also holds, because both sides are congruent to 0 mod p. In summary, and then

interchanging the roles of p and q above, we see that

aN2+1 ≡ a mod p,

aN2+1 ≡ a mod q.

This means aN2+1 − a is a multiple of p and also a multiple of q. Since p and q are two
different prime numbers this means that aN2+1−a is actually a multiple of pq, i.e. aN2+1 ≡ a

mod N . Magic!

Example 7. What is the value of N2 when N = 15? Does the mod 15 power table verify
Euler-Fermat in this case?

Corollary 2. Let N = pq, N2 = (p − 1)(q − 1) as above. Let e be relatively prime to
N2. Then for residues x mod N , f(x) ≡ xe mod N (with range in the residue numbers)
has inverse function g(x) ≡ xd mod N . Here d is the multiplicative inverse of e, mod N2.
(This result turns out to be the basis for RSA cryptography.)

Proof. Since e is chosen to be relatively prime to N2 we know the mod N2 multiplicative
inverse d exists, from all of our work with the Euclidean algorithm! Thus ed = 1+ mN2 for
some counting number m. If m = 1, then ed = 1 + N2 and

g(f(x)) ≡ (xe)d ≡ xed ≡ x1+N2 ≡ x mod N

by Euler-Fermat. If m = 2, then ed = 1 + 2N2 and

g(f(x)) ≡ (xe)d ≡ xed ≡ x1+2N2 ≡ x1+N2xN2 ≡ x1xN2 ≡ x1+N2 ≡ x mod N

by two applications of Euler-Fermat. Similarly, if ed = 1 + 3N2 then three applications of
Euler-Fermat gives the result, and by induction we see that the same result holds for all
counting numbers m = 1, 2, 3, 4, 5, ...

Example 8. For p = 3 and q = 5 we have N = 15, N2 = 8. For the encryption power
e = 3, compare we the decryption power d guaranteed by this corollary to the power(s) we
found earlier from the mod 15 power table.

We’re now ready to discuss the RSA algorithm, and why this method of encryption is
a one-way function. We’ll start with the section 9 Davis-notes example. It’s also good to
read chapters 5-6 of The Code Book.

