ACCESS 2008 - RSA
 Friday June 13

Our Plan Today:

We'll finish the last bit of yesterday's number theory notes, which explains how to find decryption powers from encryption powers, in modular arithmetic. Then to help explain the RSA public-key encryption method we will do the example worked out in the Tom Davis "Cryptography" notes, page 13-14, also using the hand-drawn Alice and Bob diagram. Davis' example uses small numbers and a one-letter message, and Maple will do all of our computations. I believe this will make the algorithm more clear to you. The explanation of the Algorithm on page 6-7 of the Rivest-Shamir-Adleman paper is also a very concise outline, as is appendix J of "The Code Book." You could also consult Wikipedia.

After we digest Davis' example we will try somewhat larger prime numbers, to help prepare you for the part of your group project in which you send yourselves (and me) encoded messages . In your actual project you will implement a medium-sized version of an RSA cipher system (big enough to send short messages, but not really big enough to be secure). You will also incorporate the "secure signature" feature, which we will discuss using Alice and Bob.

The number theory we've talked about, and the relation to RSA cryptography, is usually taught in our number theory course, Math 4400. This is a senior level course, so I would expect that some of what we've talked about has been challenging. Still, some students take Math 4400 fairly early in their undergraduate careers since it does not have very many prerequisites beyond algebra and the ability to reason mathematically. As far as ACCESS goes, we hope that you're enjoying the magic hidden in modular arithmetic, that you are pleasantly surprised that this "abstract" mathematics turns out to be so practical, and that you are appreciating that discovery, experiment and deduction have roles in mathematics just as they do in science.

I will make you do a lot of your own typing in Part I below, so that you can begin learning MAPLE and how to fix the common errors which users make. Therefore, in the file you download, many of the Maple commands which you see in the hardcopy are gone.

We will use Maple 8, and I recommend you avoid Maple 10 or higher in this project. In Maple 8, once commands from one Maple worksheet are entered into memory they are known in all the other Maple worksheets you open in your Maple desktop. This lets you organize different pieces of your computation in different windows. Maple 10 keeps different memory for each opened worksheet so you must put everything into a single worksheet. Also, if you're working on Maple 10 and plan to return to Maple 8 you must save your file specially in "classic" mode, so that Maple 8 can recognize it.

Part I

The Davis Example:

In this example Bob is going to send a message to Alice. I will follow Davis' numbering of the steps on pages 13-14. We are also going to use his table on page 9 to convert letters to numbers.

1) Alice must create her public key, for Bob to use when he encripts his message to her. So she picks two prime numbers, see page 13: ($\mathrm{p}=23$ and $\mathrm{q}=41$). Define p and q using Maple.
```
> restart: #clears all Maple memory - good to do if you start over.
> p:=23;
    q:=41; # insert prompts [> with the menu bar.
            # make definitions with :=, NOT with =.
```

```
# comment lines begin with #
# if you want more than one line of math commands
# before executing them, use <shift><return>
p:=23
    q:=41
```

2) Alice defines her modulus to be the product of p and q. This will be the first piece of her public key.
```
[> N:=p*q;
```

$$
N:=943
$$

3a) Alice privately computes the auxillary modulus $\mathrm{N} 2:=(\mathrm{p}-1)^{*}(\mathrm{q}-1)$, which is related to Euler's theorem, with which Alice will pick her encoding and decoding powers. No one else will ever see or use this number. First she finds a number e which is relatively prime to N 2 ; this will be the public encoding power and she will tell it to the world. A good e must be relatively prime to $(\mathrm{p}-1)^{*}(\mathrm{q}-1)$, so that Alice will be able to find a decoding power d . So we check the gcd:

```
> N2:= (p-1) * (q-1);
```

 e:=7;
 $$
\begin{aligned}
N 2 & :=880 \\
e & :=7
\end{aligned}
$$

$>\operatorname{gcd}(N 2, e) ;$ \#must be 1 for e to have mult. inv. mod N2 1
> ifactor(N2);
ifactor (e); \#could also check gcd with prime factorizations this
\#is what can't be done in reasonable time for huge \#composite numbers

7) Alice privately finds her "secret" decoding power. Since she does this step sooner than Davis says, we will too. Since e is relatively prime to $\mathrm{N} 2=(\mathrm{p}-1)^{*}(\mathrm{q}-1)$ it has a multiplicative inverse d , mod $(\mathrm{p}-1)^{*}(\mathrm{q}-1)$. (We talked about how to find the multiplicative inverse using the Euclidean algorithm. Luckily for us, Maple has a subroutine which does this step for us.) By the Euler-FermatTheorem, which was the page of our notes we didn't quite get to go through carefully yesterday, :(, this d will be the decoding power. I wouldn't be surprised if you're still amazed and confused by this fact, but like I tell my students in every class, confusion is the first step to understanding. I'll be happy to talk with anyone who wants to understand this part of the math better....

The first command is having Maple do the Euclidean algorithm method of finding multiplicative inverses, so you won't have to do this by hand!!!!
> isolve (e*z+N2*y=1);
\#"integer solve" ... Maple already knows e \# and N2, so is finding integer solutions for $\# x$ and z. This is what we did by hand with \#the Euclidean algorithm. As we learned, then \#z is a muliplicative

$$
\begin{gathered}
\text { \#inverse of } 7, \bmod \mathrm{~N} 2 . \\
\left\{y=3+7 _Z 1, z=-377-880 _Z 1\right\} \\
\mathrm{d}:=-377 \bmod \mathrm{~N} 2 ; \quad \begin{array}{c}
\text { \# get the residue value for } \mathrm{d} \\
\# \\
\text { by mousing in the }-377
\end{array} \\
d:=503
\end{gathered}
$$

3b) Now Alice is ready to receive messages. She yells from the rooftops: My modulus is $\mathrm{N}=943$. My encryption power is $\mathrm{e}=7$. If you want to send me a message use the encrypt function:

```
\(>\) encrypt: \(=x->x^{\wedge} e \bmod N\);
    \# if you defined \(e\) and \(N\) above,
    \#then their values will be used for the encrypt function.
    \#this command is Maplese for encrypt(x)=x^e mode N.
    \#so this is the syntax for defining elementary functions.
                        encrypt \(:=x \rightarrow x^{e} \bmod N\)
```

Note: In class and in the picture notes I made for you we use the letter E for the encrypt function.
4) The message which Bob wishes to send Alice is the letter Y. He consults Davis' table on page 9. The number that corresponds to Y is 35 .

```
> M:=35;
```

$$
M:=35
$$

5) Bob encrypts the message using Alice's public key:
```
> C:=encrypt(M); #either of these works for small modulus
    C:=M^e mod N;
\[
C:=545
\]
\[
C:=545
\]
```

6) Bob sends the number 545 to Alice.
7) Alice decodes the message using her decoding power d, which she found in step 7, a while ago.
```
> decrypt:=y->y^d mod N;
    decrypt:= y -> y }\mp@subsup{}{}{d}\operatorname{mod}
    > decrypt(C);
    C^d mod N; #either of these work for small modulus
```

 35
 Alice consults the table, sees that 35 corresponds to Y, and understands what Bob has sent. WE DID IT! Except with Alice's puny primes our message pieces can only be one letter long, so what we've got is really no better than a substitution cipher.

Part II:

A more practical size.

In your project everyone will pick primes bigger than $10^{\wedge} 50$, so that your moduli will be bigger than $10^{\wedge}(100)$. This is still not big enough to be secure, but you will be able to send messages with up to 50 characters per packet. (And so that decoding doesn't get too tedious for all groups, you will be limited to a total message at most 2 packets.)

For now we will pick primes bigger than $10^{\wedge} 6$, and use message packets of 6 characters. This means our message packets will have up to 12 digits per packet, which will be less than our modulus N , since N will be greater than $10^{\wedge} 12$.

```
> restart: #this will clear all old definitions.
    #It's a good idea to restart when you begin
    #new work - of course you might need to
    #go back and re-enter some old commands that
    #you need again. (Repetition is good pedagogy.)
> randomize();#this will tell the "random" number generator
    #where to start. the "seed" it generates is based
    #on the system clock, so if you all enter this command
    at
        #the same time you might get the same "random" numbers.
        #That would be bad. See help windows to see how to
        #make your random numbers unlike your classmates'.
```

 1213303535
 > rand(); \#random number generator,
\#default range is between 0 and 12 digits
430211989080
> bigger:=rand(10^50..10^51): \#random number between 10^50 and
10^51
bigger();
152664283907507598759778242023722704660594591547692

For now, (but not later)

```
> good:=rand(10^6..10^7):
    good();
                                    1 3 1 6 4 1 2
> for i from 1 to 100 do #try 100 times
            x1:=good():
        if
            isprime(x1)=true #check if number is prime
            then print(x1); #if it is, let's see it
        end if;
    od:
```

It's unlikely your numbers agree with mine. (Well, in truth if you all start the generator at the same place, you'll all get the same so-called random numbers.) You may chose your p and q using your list! We are repeating the process we worked out in the tiny example.)

$$
\begin{aligned}
& \text { [> p:=3119681 ; \#I got these with my mouse, by } \\
& \text { \#highlighting with left mouse, } \\
& \text { \#clicking cursor, and pasting with } \\
& \text { \#middle mouse (at least on our system) } \\
& q:=3906431 \text {; } \\
& \mathrm{N}:=\mathrm{p} \text { *q ; \#our modulus } \\
& p:=3119681 \\
& q:=3906431 \\
& N:=12186818568511
\end{aligned}
$$

To see that a system of this size is not secure, try the following command. This is the command that would fail if we had chosen primes of length 200 instead of 12 , and that's the reason RSA is secure when you use huge primes.
[$>$ ifactor (N);
(3119681) (3906431)
3) Find an encoding power e
> N2: $=(\mathrm{p}-1)$ * $(\mathrm{q}-1)$;

$$
N 2:=12186811542400
$$

```
> #find encryption power which has a multiplicative inverse
    #mod N2:
    for i from 1 to 10 do
        x2:=good();
        if gcd(x2,N2)=1
            then print(x2);
        fi
    od:
```

 5101573
 5096527
 4281273
 > e:=3906431;
gcd(e,N2); \#check relative prime
$e:=3906431$
1
7) Get decoding power

```
> isolve(e*z + y*N2 =1);
        #find decryption power, which is "z" above
            {y=2059440+3906431 _Z1,z=-6424792134529-12186811542400_Zl}
```

```
> d:= -6424792134529 mod N2; #need a positive power-
    #this will put it into the N2 residue range
    #use the mouse to copy and paste big numbers
    d:= 5762019407871
```

Technical Point: When we get to step 6, or certainly step 8, Maple will complain when we try to compute large powers of large numbers, so we have to lead it through this modular computation in smaller steps. The procedure below does the trick. It's analagous to method Davis outlines in his notes, except using powers of 10 rather than powers of 2 . We've been using similar trickery in class. Here's the idea: Suppose we want to compute
in small steps. We write

$$
[783]^{565} \bmod N
$$

$$
\begin{gathered}
{[783]^{565}=\left[[783]^{500}\right]\left[[783]^{60}\right]\left[[783]^{5}\right] \bmod \mathrm{N}} \\
=\left[[783]^{100}\right]^{5}\left[[783]^{10}\right]^{6}[[783]]^{5} \bmod \mathrm{~N} .
\end{gathered}
$$

By successive multiplication and reduction to the residue value, we then make a table of the residue values of $783,[783]^{10},[783]^{100},[783]^{1000}$, etc., i.e of residue values for the powers of 783 , where the power is itself a power of 10 . We then multiply these table residue values and reduce $\bmod \mathrm{N}$, the appropriate number of times, as indicated in the decomposition above. Thus we recover the residue value of $[783]^{565}$ without every having to deal with integers which are greater than N^{2}. (Actually I was sloppy, and my intermediate numbers could get as large as N^{10}, but for our N -values this won't be a problem.)

Here is the procedure, which uses a subprocedure to pick off digits from numbers:
$>\operatorname{digit}:=(x, n)->\operatorname{trunc}\left(x / 10^{\wedge} n\right)-10 * \operatorname{trunc}\left(x / 10^{\wedge}(n+1)\right)$;

$$
\text { digit }:=(x, n) \rightarrow \operatorname{trunc}\left(\frac{x}{10^{n}}\right)-10 \operatorname{trunc}\left(\frac{x}{10^{(1+n)}}\right)
$$

```
> digit(123.56,-1);
    digit(123.56,2);
    digit(123.56,0);
        #check how digit picks off the digits corresponding
        #to powers of 10
```

 5
 1
 3
 > encrypt:= proc(M1,E,N3) \#message, encipher power,modulus
\#we assume all M1's, E's have at most 105 digits
local i,j, \#indices
L1, \#list of succesive 10th powers of M1
ans; \#answer
\#this do loop makes the list of powers of M1 described above:
L1[1]:=M1 mod N3;
for i from 2 to 105 do
L1[i]:=L1[i-1]^10 mod N3;
od:
\#now multiply table entries to get the residue value of the
\#encryption power function:
ans:=1: \#initialize answer

```
        for j from 1 to 105 do
        ans:=ans*(L1[j]^digit(E,j-1)) mod N3;
    od:
RETURN(ans);
end:
```

Let's check!!!
> M:=12345678910;

$$
M:=12345678910
$$

> secret:=encrypt (M, e, N);
secret $:=4489330458615$
> encrypt (secret, d,N);
\#decryption is just \#encryption in modular arithmetic, with a different power.

12345678910
YES!!!
What would happen above if you started with an M which was larger than your modulus N ? (It would not be good.)

Part III

An Actual Message
We Use Davis' Table on page 9 to encrypt " I'm Dizzy". We will need two chunks
> M1:=196749101445;
M2:=62626163;

$$
\begin{gathered}
M 1:=196749101445 \\
M 2:=62626163
\end{gathered}
$$

> C1:=encrypt (M1,e,N);
C2:=encrypt (M2,e,N);
> encrypt (C1,d,N); \#decryption is encryption with encrypt (C2,d,N); \#a different power!

