
1

Powers in Modular Arithmetic, and RSA Public Key
Cryptography

Lecture notes for Access 2006, by Nick Korevaar.

It was a long time from Mary Queen of Scotts and substitution ciphers until the end
of the 1900’s. Cryptography underwent the evolutionary and revolutionary changes which
Simon Singh chronicals in The Code Book. By the mid 1970’s there were amazingly com-
plicated encryption algorithms which could be made essentially unbreakable. For example,
in Chapter 6, Singh mentions the Lucifer cipher, a special version of which is known as the
Data Encryption Standard, or DES.

However, no matter how convoluted the the encryption methods were, and how fre-
quently the keys were changed for security reasons, all methods required that both parties
to the message possessed the key for encryption and decryption.... and it was just assumed,
because this had always been the case, that if you possessed the method to encrypt a mes-
sage, then this was equivalent after perhaps a little work, to also knowing how to decrypt
it. By the mid 1970’s there were thousands of couriers flying all over the world, whose only
job was to transfer cipher keys.

As the the precursor to the internet, namely the ARPAnet, was beginning to grow,
Whitfield Diffie and Martin Hellman, as well as others, realized the huge potential for
electronic transactions, together with the need for assured security. Diffie-Hellman were
perhaps the first to realize that there was an entirely new way to think of cryptography;
that perhaps there were encryption keys which you could let everyone in the world know,
but for which you could never the less keep secret the decryption key. This would solve
the problem of key distribution, since if you wanted to receive secure messages you could
tell the world how to encrypt anthing they wanted to send you, but only you would know
the decryption key which could stay safely at home. Diffie-Hellman called such encryption
keys, “trapdoor”, or “one way” functions, because knowing the encryption function did not
automatically allow clever people to work out the decryption function. In 1977, Ronald
Rivest, Adi Shamir and Leonard Adleman described one of the easiest one-way functions,
and the resulting method of public key cryptography is called RSA, in their honor. As
we shall see, this method relies on number theory and modular arithmetic, and will use
everything we’ve been talking about so far.

Remark 1. If you use the encryption function f(x) ≡ x+a mod N , which corresponds to
Caesar shifts, anyone can deduce the decryption function g(x) ≡ x − a mod N . Similarly,
if you specify the encryption function f(x) ≡ ax mod N , for gcd(a,N) = 1, then a lot of
people could use the Euclidean algorithm to find the multiplicative inverse b of a, mod N ,
and use the decryption function g(x) ≡ bx mod N . So neither of these examples is a
one-way function!

2

Remark 2. In our examples we’ve been assigning numbers to each letter of a plaintext
and then using modular arithmetic to construct a cipher. In practice this just amounts to a
substitution cipher, and so can be broken easily with frequency analysis. What we will do
for RSA cryptography is to use HUGE moduli N and break messages into packets whose
lengths fall into the residue range of N . For example, if N has at least 13 digits, then you
can use the table on page 9 of Tom Davis’ notes, Cryptography, to convert any 6-character
expression into a number in the residue range of N , since each character is represented with
two digits.

Example 1. Use the Davis table on page 9 of his notes to convert the two word sentence
Hello there! into two number packets, each of which is less than 1012.

Example 2. For an example we can work by hand, let our modulus N = 11. Let our
candidate encryption function be f(x) ≡ x2 mod 11. Complete the table below and explain
why this function won’t work to encrypt the numbers in our residue range.

x 0 1 2 3 4 5 6 7 8 9 10

x2 0 1 4 9 5

Example 3. Keeping N = 11, show that the function f(x) ≡ x3 mod 11 does encrypt
(permute) the residue numbers:

x 0 1 2 3 4 5 6 7 8 9 10

x3 0 1 8

Example 4. We might hope that if our encryption function is f(x) ≡ xe mod N , then our
decryption function is g(x) ≡ xd mod N , for some power d. For the encryption function in
the previous example e = 3. We shall now deduce a possible value for the decryption power
d: Since f(2) ≡ 8 mod 11, we want g(8) ≡ 2, i.e.

8d
≡ 2 mod 11.

Compute successive powers of 8 until you are able to solve this equation for d. (Hint:
d = 7.)

3

Exercise 1. But we need to check that the decryption power d = 7 works for every x in
our residue range! Let group number x check that this is so, for the residue number x + 1,
except that group 1 gets to check x = 10, since we just did x = 2. Be clever to minimize
your computing!

Exercise 2. RSA cryptography uses moduli N = pq, where p and q are (HUGE) prime
numbers. For p = 3, q = 5, N = 15, use the mod 15 table of powers to figure out good
and bad encryption powers e.

Exercise 3. f(x) ≡ x3 mod 15 is a good encryption function. Figure out a possible
decryption function g(x) ≡ xd mod 15.

4

All is Explained

We’ve been doing a lot of experimentation with modular arithmetic, which is a great
way to get ideas about what might be true. Number theory has been a favorite for many
famous mathematicians, and so some of their names are attached to the following important
theorems, which maybe they were also led to by experimentation. These results are the
underpinning of RSA cryptography.

Theorem 1 (Fermat’s Little Theorem). If p is a prime and if 0 < a < p is a residue
number, then ap−1

≡ 1 mod p.

Proof. Pick any non-zero residue a as above, and consider the corresponding row of the mod
p multiplication table. (You can make this less abstract by using the mod 7 table as an
example.) Since a has a multiplicative inverse mod p, ax ≡ ay only when x ≡ y. Therefore
the residues across the row, namely the numbers

1a, 2a, 3a, ..., (p − 1)a

must all be different, i.e. a permuation of the non-zero residues 1, 2, ..., (p − 1). Thus the
product of all these terms satisfies

(1a)(2a)...(p − 1)a ≡ (1)(2)...(p − 1) mod p,

ap−1(1)(2)...(p − 1) ≡ (1)(2)...(p − 1) mod p.

Multiply both sides of this equation by the multiplicative inverses of 2, 3, ...(p − 1), i.e.
cancel the term (2)(3)...(p − 1) from both sides of the equation. Deduce

ap−1
≡ 1 mod p.

Corollary 1. if f(x) ≡ xe mod p, and d is a multiplicative inverse of e, mod p − 1, then
g(x) ≡ xd mod p is the inverse function of f (on the set of residue numbers).

Proof. Notice that if x = 0 the result holds. Thus we can assume x = a, a non-zero residue.
Since e and d are multiplicative inverses mod p − 1, we have

ed = 1 + m(p − 1)

for some counting number m. Thus

g(f(a)) ≡ g(ae) ≡ (ae)d ≡ aed

≡ a1+m(p−1)
≡ a1(ap−1)m ≡ a(1m) ≡ a,

by Fermat’s Little Theorem! This shows that g is the inverse function to f .

Example 5. For p = 11 and e = 3, we found d = 7. Notice that 7 is a multiplicative
inverse for 3, mod 10.

5

Theorem 2 (Euler-Fermat Theorem). If N = pq is a product of two prime numbers,
define N2 = (p−1)(q−1). If a is any residue number mod N which has no common factors
with N , then

aN2
≡ 1 mod N

.

Proof. The idea of the Euler-Fermat Theorem is very similar to that in Fermat’s little
theorem, and can be illustrated in the mod 15 multiplication table. Since (a,N) = 1, a

has a multiplicative inverse. (We say a is a “unit”, for short). Consider the list of the
products of a with all the other units, taken from row a of the multiplication table. You
must obtain a permutation of the original unit collection because ax ≡ ay only if x ≡ y.
Thus the product of all terms which are a times a unit must just equal the product of all
units. Cancel the unit terms as previously to deduce aN2

≡ 1 mod N, where N2 is the
number of units. Since N2 is equivalently the number of non-zero residues which don’t have
factors of p or q, we can count N2 by starting with the the number of non-zero residues,
pq − 1, and subtracting off those which are multiples of p or q. Precisely,

N2 = pq − 1 − (q − 1) − (p − 1) = pq − p − q + 1 = (p − 1)(q − 1).

This completes the proof.

Corollary 2. Let N = pq, N2 = (p−1)(q−1) as above. If e is relatively prime to N2. Then
f(x) ≡ xe mod N has an inverse function g(x) ≡ xd mod N , where d is a multiplicative
inverse of e, mod N2

Proof. If x = a is a unit, then

g(f(a)) ≡ (ae)d ≡ aed
≡ a1+mN2

≡ a(1N2)
m

≡ a(1)m ≡ a.

If x is not a unit, then there is a special argument which checks this corollary. You can find
it in the original paper by Rivest-Shamir-Adelman. (There is a link to the RSA paper on
our home page.) It depends on the fact that all residue numbers x, not just units, satisfy
an equation which looks like the Euler-Fermat identity multiplied by x:

xN2+1
≡ x mod N.

Example 6. For p = 3 and q = 5 we have N = 15, N2 = 8. When we used the encryption
power e = 3, we found the decryption power d = 3. Notice that ed ≡ 1 mod 8. Also notice,
from the power table, that x9

≡ x for all residues x.

