
ACCESS 2005 - RSA
Thursday June 15

Our Plan Today:
To help clarify the RSA public-key encryption method that was barely introduced yesterday, we will do 
the example worked out in the Tom Davis "Cryptography" notes, page 13-14.  These are great notes - 
you can think of them as the Cliff Notes for "The Code Book." Davis’ example uses small numbers and 
a one-letter message, and Maple will do all of our computations.  I believe this will make the algorithm 
more clear to you.  The explanation of the Algorithm on page 6-7 of the Rivest-Shamir-Adleman paper 
is also a very concise outline which will make more and more sense as you play with examples.

After we digest Davis’ example we will try  somewhat larger prime numbers, to help prepare you for the 
part of your group project in which you send yourselves (and me) encoded messages .   In your actual 
project, which will be posted by later today, you will impliment a medium-sized version of an RSA 
cipher system (big enough to send short messages, but not really big enough to be secure).  You will also 
incorporate the "secure signature" feature, which we will discuss today.  You can also read about the 
RSA algorithm in ssection IV of the Rivest-Shamir-Adleman paper, or in appendix J of "The Code 
Book."

We will  stop our lab work by 10:10 today so that we have plenty of time to make our way over to AEB 
360 (?!) for the lecture by Professor Jon Seger at 10:30. We  will back here all of tomorrow morning at 
8:30 a.m. to tie up loose ends we don’t finish today, and to get a good start on your week 1 projects. 

The number theory we’ve talked about, and the relation to RSA cryptography,  is usually taught in our 
number theory course, Math 4400.  This is a senior level course, so I would expect that some of what 
we’ve talked about has been challenging.  Still, some students take Math 4400 fairly early in their 
undergraduate careers since it does not have very many prerequisites beyond algebra and the ability to 
reason mathematically.  As far as ACCESS goes, we  hope that you’re  enjoying the magic hidden in 
modular arithmetic, and that you are pleasantly surprised that this "abstract" mathematics turns out to be 
so practical.

I will make you do a lot of your own typing in Part I below, so that you can begin learning MAPLE and 
common errors which users make.  Therefore, in the file you download, many of the Maple commands 
which you see in the hardcopy are gone.

Part I 
The Davis Example:
In this example Bob is going to send a message to Alice.   I will follow Davis’ numbering of the steps on 
pages 13-14.  We are also going to use his table on page 9 to convert letters to numbers.


1)   Alice must create her public key, for Bob to use when he encripts his message to her.  So she picks 
two prime numbers, see page 13:  (p=23 and q=41).  Define p and q using Maple.
> restart: #Just as every time you reopen a file you must 

      #re-execute its commands into Maple’s memory, you will

      #often want to redo a process in a given file using 

      #different data variables.  The restart command clears 

      #all of the current memory.

> p:=23;

q:=41;




   #Insert prompts with the [> button on the menu bar.

   #use shift-return for multi-line commands.

   #make definitions with the symbols :=, NOT with =

   #comment lines have # as their first character

 := p 23

 := q 41

2)  Alice defines her modulus to be the product of p and q.  This will be the first piece of her public key. 
> N:=p*q;

 := N 943

3a)  Alice privately computes the auxillary modulus N2:=(p-1)*(q-1), which is related to Euler’s 
theorem, with which Alice will pick her encoding and decoding powers.  No one else will ever see or use 
this number.  First she finds a number  e which is relatively prime to N2; this will be the public encoding 
power and she will tell it to the world.  A good e must be relatively prime to (p-1)*(q-1), so that Alice 
will be able to find a decoding power d.  So we check the gcd:  
> N2:=(p-1)*(q-1);

e:=7;

 := N2 880

 := e 7
> gcd(e,880);   #greatest common denominator 

              #-we want it to be 1

1
> ifactor(N2); ifactor(e);

              #for small numbers (only) we can also

              #compare integer prime factors to deduce the gcd.

              #How would you find out about these commands if you

              #weren’t sure how to use them, or even if they 
existed?

              #Answer: you would use the Help button at the 

              #top right of the menu.

( ) 2 4 ( ) 5 ( ) 11

( ) 7

7 )  Alice privately finds her "secret" decoding power.  Since she does this step sooner than Davis says, 
we will too.  Since e is relatively prime to N2=(p-1)*(q-1) it has a multiplicative inverse d, mod 
(p-1)*(q-1).  (We talked about how to find the multiplicative inverse using the Euclidean algorithm.  
Luckily for us, Maple has a subroutine which does this step for us.)  By the Euler-FermatTheorem, 
which was the page of our notes we didn’t quite get to go through carefully yesterday, :(, this d will be 
the decoding power.  I wouldn’t be surprised if you’re still amazed and confused by this fact, but like I 
tell my students in every class, confusion is the first step to understanding.  I’ll be happy to talk with 
anyone who wants to understand this part of the math better....
    The first command is having Maple do the Euclidean algorithm method of finding multiplicative 
inverses, so you won’t have to do this by hand!!!!
> isolve(e*z+y*N2=1);  #isolve stands for "integer solve", 

     #i.e. find integer solutions.  Here the unknowns 




     #are z and y, since we already set e=7 

     #and N2=880  We don’t really care about the y-value, 

     #we just want z.  this is because when we interpret 

     #e*z+y*N2=1 in N2 clock arithmetic, N2 is congruent to 0, so

     #so ez=1 mod N2

{ },=y +3 7 _Z1 =z − −377 880 _Z1
> d:=-377 mod N2;

     #using mod N2 will get d back in usual residue range.

     #We get Davis’ solution from step 7!  For "fun" you could

     #try getting this number from the Euclidean algorithm.

 := d 503

3b)  Now Alice is ready to receive messages.  She yells from the rooftops:  My modulus is N=943.  My 
encryption power is e=7.  If you want to send me a message use the encrypt function:
> encrypt:=x->x^e mod N;

  #if you defined e and N above, 

  #then their values will be used for the encrypt function

  #this command is Maplese for encrypt(x)=x^e mod N.

  #So this is the syntax for defining 

  #elementary functions.

 := encrypt →x modxe N

Note:  In class and in the picture notes I made for you we use the letter E for the encrypt function. 

4)  The message which Bob wishes to send Alice is the letter Y.  He consults Davis’ table on page 9.  
The number that corresponds to Y is 35. 
> M:=35;

 := M 35

5) Bob encrypts the message using Alice’s public key: 
> C:=encrypt(M);  #either of these should work

C:=M^e mod N;

 := C 545

 := C 545

6)  Bob sends the number 545 to Alice.
8)  Alice decodes the message using her decoding power d, which she found in step 7, a while ago.
> decrypt:=y->y^d mod N;

 := decrypt →y modyd N
> decrypt(C);  #both of these should work

C^d mod N;

35

35

Alice consults the table, sees that 35 corresponds to Y, and understands what Bob has sent.  WE DID IT!  



Except with Alice’s puny primes our message pieces can only be one letter long, so what we’ve got is 
really no better than a substitution cipher. 

Part II: 
A more practical size.

     In your project everyone will pick primes bigger than 10^50, so that your moduli will be bigger than 
10^(100).  This is still not big enough to be secure, but you will be able to send messages with up to 50 
characters per packet.  (And so that decoding doesn’t get too tedious for all groups,  you will be limited 
to a total message at most 2 packets.)  
     For now we will pick primes bigger than 10^6, and use message packets of 6 characters.  This means 
our message packets will have up to 12 digits per packet, which will be less than our modulus N, since N 
will be greater than 10^12.   

> restart:   #this will clear all old definitions.

           #It’s a good idea to restart when you begin

           #new work - of course you might need to 

           #go back and re-enter some old commands that

           #you need again.  (Repetition is good pedagogy.)

> randomize();#this will tell the "random" number generator 

           #where to start. the "seed" it generates is based

           #on the system clock, so if you all enter this command 
at

           #the same time you might get the same "random" numbers.

           #That would be bad.  See help windows to see how to

           #make your random numbers unlike your classmates’.

              

1150317450
> rand();    #random number generator,

           #default range is between 0 and 12 digits 

822508114783
> bigger:=rand(1..10^51):  #much bigger

bigger();

63075143270981716225070637549805384099131653331683
For now,
> good:=rand(1..10^7):

good();

6582314
> for i from 1 to 100 do

  x1:=good():

   if (x1>10^6         #check number is big enough

      and

    isprime(x1)=true)  #and check if number is prime

    then print(x1);     #if it is, let’s see it

  fi;

od:  

  

2678909



8885573

5546543
It’s unlikely your numbers agree with mine.  (Well, in truth if you all start the generator at the same 
place, you’ll all get the same so-called random numbers.)  You may chose your p and q using your list!  
We are repeating the process we worked out in the tiny example.)
> p:= 2678909  ;  #I got these with my mouse, by 

             #highlighting with left mouse,

             #clicking cursor, and pasting with

             #middle mouse (at least on our system)  

q:= 8885573 ;

N:= p*q ;           #our modulus

 := p 2678909

 := q 8885573

 := N 23803641479857
To see that a system of this size is not secure, try the following command.  This is the command that 
would fail if we had chosen primes of length 200 instead of 12, and that’s the reason RSA is secure 
when you use huge primes.
> ifactor(N);

( ) 8885573 ( ) 2678909
3)  Find an encoding power e
> N2:=(p-1)*(q-1);

 := N2 23803629915376

> #find encryption power which has a multiplicative inverse

#mod N2:

for i from 1 to 10 do

   x2:=good();

   if gcd(x2,N2)=1

     then print(x2);

   fi

od:

8265801

7055163

6126981

2303865

3441711
> e:=7055163;

gcd(e,N2);   #check relative prime

 := e 7055163

1
7) Get decoding power
> isolve(e*z + y*N2 =1);

   #find decryption power, which is "z" above

{ },=y +6030424 7055163 _Z1 =z − −20346231707021 23803629915376 _Z1
> d:= -20346231707021 mod N2;




   #use the mouse to copy and paste big numbers

 := d 3457398208355
Technical Point:  When we get to step 6, or certainly step 8 Maple will complain when we try to 
compute large powers of large numbers, so we have to lead it through this modular computation in 
smaller steps. The procedure below does the trick. It’s analagous to method Davis outlines in his notes, 
except using powers of 10 rather than powers of 2.  We’ve been using similar trickery in class.  Here’s 
the idea: Suppose we want to compute

[ ]783 565  mod N
in small steps.  We write

=[ ]783 565 [ ][ ]783 500 [ ][ ]783 60 [ ][ ]783 5   mod N

= [ ][ ]783 100
5

[ ][ ]783 10
6

[ ][ ]783 5  mod N.
By successive multiplication and reduction to the residue value, we then make a table of the residue 

values of  783, [ ]783 10 , [ ]783 100 , [ ]783 1000, etc., i.e of residue values for the powers of 783, where the 
power is itself a power of 10. We then multiply these table residue values and reduce mod N, the 
appropriate number of times, as indicated in the decomposition above.  Thus we recover the residue 

value of [ ]783 565  without every having to deal with integers which are greater than  N2.  (Actually I was 

sloppy, and my intermediate numbers could get as large as N10, but for our N-values this won’t be a 
problem.)
    Here is the procedure, which uses a subprocedure to pick off digits from numbers:
> digit:=(x,n)->trunc(x/10^n)-10*trunc(x/10^(n+1));

 := digit →( ),x n −






trunc

x

10n 10








trunc

x

10
( )+1 n

> digit(123.56,-1);

digit(123.56,2);

digit(123.56,0);

   #check how digit picks off the digits corresponding

   #to powers of 10

5

1

3
> encrypt:= proc(M1,E,N3)  #message, encipher power,modulus

                #we assume all M1’s, E’s have at most 105 digits

    local i,j,  #indices

          L1,   #list of succesive 10th powers of M1

          ans;  #answer

  #this do loop makes the list of powers of M1 described above:

  L1[1]:=M1  mod N3;

  for i from 2 to 105 do

     L1[i]:=L1[i-1]^10 mod N3;

  od: 

  #now multiply table entries to get the residue value of the

  #encryption power function:

  ans:=1:    #initialize answer

  for j from 1 to 105 do

     ans:=ans*(L1[j]^digit(E,j-1)) mod N3;




   od:



RETURN(ans);

end:

          

         

Let’s check!!!
> M:=12345678910;

 := M 12345678910
> secret:=encrypt(M,e,N);

 := secret 10924456927310
> encrypt(secret,d,N);

  #decryption is just encryption with a different power

12345678910
YES!!!

Part III

An Actual Message

We Use Davis’ Table on page 9 to encrypt  " I’m Dizzy".  We will need two chunks
> M1:=196749101445;

M2:=62626163;

 := M1 196749101445

 := M2 62626163
> C1:=encrypt(M1,e,N);

C2:=encrypt(M2,e,N);

 := C1 972836527060

 := C2 9089468087516
> encrypt(C1,d,N);

encrypt(C2,d,N);

196749101445

62626163
> 


