
Modular Arithmetic
Notes for Wednesday June 15

ACCESS 2005

 Yesterday, Jim introduced us to the idea of using modular (clock) arithmetic for
encryption, after we first converted letters to numbers. Do you remember how to
describe the encryption and decryption functions for a Caesar shift? Using multiplication
to make an encryption cipher led us to the question of whether we can find multiplicative
inverses in modular arithmetic, in order to find the decryption function. Surprisingly, the
answer to the multiplicative inverse problem goes all the way back to the ancient Greeks,
and to the Euclidean algorithm for finding the greatest common divisor for a pair of
numbers.
 As Jim will explain today (and as you’ve been reading), RSA cryptography, a key
element in secure internet transactions, is based on encryption functions which raise
(huge) numbers to (huge) powers, with respect to (huge) moduli. The amazing and
amazingly important feature of this sort of “public key cryptography” is that you can tell
everyone how to encrypt messages sent to you without giving away the secret of how you
will decrypt them. When you create your encryption algorithm (which you will make
public), and your decryption algorithm (which you will keep secret), you'll need to do
some modular arithmetic computations. In particular, you'll need to solve a certain
multiplicative inverse problem. (Actually, you'll get MAPLE to do the grunge work.)
That's why we'll review multiplicative inverses and the Euclidean algorithm this morning
– because of their role in RSA cryptography.

1) Consider the general question of when numbers have multiplicative inverses in
modular arithmetic. NOT ALL NUMBERS DO!

1a) Use the two multiplication tables on the next page to construct multiplicative
inverse tables, when the modulus is n=7 and when it is n=15. (You could squeeze these
tables in next to the multiplication tables.)

1b) Call a clock number “good” if it has a multiplicative inverse mod n. What
properties do good numbers have relative to n, and what properties do the corresponding
rows in the multiplication table have? Call a clock number “bad” if it does not have a
multiplicative inverse, mod n. List all the properties of bad numbers and bad rows.
Explain the “why” behind each of your observations, if you can!

Mod 15 multiplication table

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 2 4 6 8 10 12 14 1 3 5 7 9 11 13

3 3 6 9 12 0 3 6 9 12 0 3 6 9 12

4 4 8 12 1 5 9 13 2 6 10 14 3 7 11

5 5 10 0 5 10 0 5 10 0 5 10 0 5 10

6 6 12 3 9 0 6 12 3 9 0 6 12 3 9

7 7 14 6 13 5 12 4 11 3 10 2 9 1 8

8 8 1 9 2 10 3 11 4 12 5 13 6 14 7

9 9 3 12 6 0 9 3 12 6 0 9 3 12 6

10 10 5 0 10 5 0 10 5 0 10 5 0 10 5

11 11 7 3 14 10 6 2 13 9 5 1 12 8 4

12 12 9 6 3 0 12 9 6 3 0 12 9 6 3

13 13 11 9 7 5 3 1 14 12 10 8 6 4 2

14 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Mod 7 multiplication table

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

2) Terminology: These words and phrases pop up in our discussion:

Prime number:

Composite number:

Prime factorization:

“d divides n”, nd / .

Common divisor of b and n

Greatest common divisor of b and n,),gcd(nb .

“b and n are relatively prime”:

residue (or clock number) of b, mod n.

3) From our work in (1) we have been led to the following important fact:

Theorem: We can solve the multiplicative inverse equation for b,

bx n≡ 1 mod
if and only if

1),gcd(=nb
The explanation of this theorem can be broken into two halves:
Part I: If 1),gcd(>= dnb , then b has no multiplicative inverse mod n. This is because
when you create row b of the multiplication table, the factor d will divide each term in
this row. Thus there will not be a “1” in this row, and b will not have a multiplicative
inverse.

Part II: If 1),gcd(=nb , then b does have a multiplicative inverse mod n. If you like
logic arguments you can deduce an explanation of this fact based on the various
properties you have discovered for “good” and “bad” rows in the multiplication table.
But the Euclidean algorithm will prove this part of the theorem, and at the same time
construct the multiplicative inverse, so we’ll get our proof of Part II from there.

4) Euclid in action. Can we find the multiplicative inverse for 68, mod 1003? Well, we
can use the Euclidean algorithm to find out whether or not gcd(,681 003 gcd(,)68 1003 1= : Fill in the table:

a (numerator) b (denominator) r (remainder q (quotient)

1003 68

Answer:

By the way, now would be a good time to carefully verify that Euclid’s algorithm really
does construct the greatest common divisor. Here’s why:

Focus on the numerator (a) and denominator (b) entries in each successive row. We can
show that gcd(a,b) stays the same as we move down successive rows, and so by the time
we get to the row with zero remainder, the last b-entry will be the gcd of the bottom row
(since it divides the bottom row’s a value). Thus this last b-entry is also the gcd of the
top row!

If we look at the numerators and denominators for two successive rows they have the
form

numerator denominator
a b
b r

where r was the remainder from the first row. But the first row represents the equivalent
equations

a
b

q
b

= +
r

a qb r= +
r a qb= −

From the third equation we see that if a/d and b/d , then rd / , so any divisor of a and b
is also a divisor of b and r. From the second equation we see that if bd / and rd / then
also a/

gcd(,) gcd(,)

d , so any divisor of b and r is also a divisor of b and a. Since the common
divisors of a and b are exactly the common divisors of b and r, deduce

a b b r=
 Thus

17)17,51gcd()51,68gcd()68,1003gcd(===

In general, the Euclidean algorithm will terminate after a finite number of steps,
with a remainder of zero (why?). Then the preceding denominator “b” will be the greatest
common denominator of the original a and b!

5a) Can we find a multiplicative inverse to 123, mod 1003? Here’s the filled-in
Euclidean algorithm table, from which you can see that gcd(1003,123)=1.

a (numerator) b (denominator) r (remainder q (quotient)
1003 123 19 8
123 19 9 6
19 9 1 2
9 1 0 9

Thus we should be able to solve the inverse equation, using the hocus-pocus Jim showed
us at the end of his presentation yesterday. We should practice this!
1231x≡
Here’s how it goes: In case 1),gcd(=ba , you can use the table from the bottom up in
order to find the multiplicative inverse for b mod a. Actually, start on the second to last
row and express the remainder 1 in terms of the current a and b:

bqar *−=
1= 19− 2 * 9

Notice at this stage we have expressed 1 as a linear combination of the “a” and “b” values
in the third row of our table. We use the next higher row to express the remainder 9 in
terms of that row’s a and b:

9 = 123− 6 *19
Substitute this expression for 9 into the previous equation, and we get:

1= 19− 2 * (123− 6 *19)
1 = −2 *123 +13*19

At this stage we have expressed the number 1 as a linear combination of the “a” and “b”
values from row 2! Now use the top row to substitute the 19’s, in terms of that row’s a
and b, 1003 and 123:

19 = 1003− 8*123
1= −2 *123+13* (1003− 8*123)

11061 23=−* 1 106 123 13 1003= − +* *
So,

−106 *123≡ 1 mod 1003
897 *123 ≡ 1 mod 1003

This needs practice!!!!
5b) Find ()81− () with the Euclidean algorithm, and compare to the table on page 2. mod8 1− 15

5c) Find 26 −1 mod 53()
5d) Use 5c) to solve the following equation for x, and check your answer:

26x ≡15 mod 53
5e) Find 38()−1 mod 123
5f) Solve 12345 . Hint: Start by using the Euclidean algorithm to find

, which is NOT 1.
6 54321* modx ≡

gcd(,)5432112345

For future reference:

A table of powers, mod 15

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

P 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 4 8 1 2 4 8 1 2 4 8 1 2 4

3 3 9 12 6 3 9 12 6 3 9 12 6 3 9

4 4 1 4 1 4 1 4 1 4 1 4 1 4 1

5 5 10 5 10 5 10 5 10 5 10 5 10 5 10

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

7 7 4 13 1 7 4 13 1 7 4 13 1 7 4

8 8 4 2 1 8 4 2 1 8 4 2 1 8 4

9 9 6 9 6 9 6 9 6 9 6 9 6 9 6

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

11 11 1 11 1 11 1 11 1 11 1 11 1 11 1

12 12 9 3 6 12 9 3 6 12 9 3 6 12 9

13 13 4 7 1 13 4 7 1 13 4 7 1 13 4

14 14 1 14 1 14 1 14 1 14 1 14 1 14 1

