
ACCESS 2002 - RSA
Thursday June 20

Our Plan Today:

While the RSA public-key encryption method is still clear in your mind, :), we will do the example 
worked out in the Tom Davis "Cryptography" notes, page 13-14.  This should help make things more 
concrete.  This example uses small numbers and a one-letter message, and Maple will do all of our 
computations.  I believe this will make the algorithm more clear to you.  The explanation of the 
Algorithm on page 6-7 of the Rivest-Shamir-Adleman paper is also a very concise outline which will 
make more and more sense as you play with examples.

After we digest Davis’ example we will try  somewhat larger prime numbers, to help prepare you for the 
part of your group project in which you send yourselves (and me) encoded messages . 

We will  stop by 10:10 today so that we have plenty of time to make our way over to JTB 120 for the 
lecture by Professor Seger at 10:30.  If I get carried away and start to look like I’m going past 10:10 , 
please stop me.  We  have all morning tomorrow in the Math computer lab LCB 115, so we need not 
finish the handout today.   If the last couple of days have made you dizzy, you should know that the 
number theory we’ve talked about, and the relation to RSA cryptography,  is usually taught in our 
4000-level (typically junior/senior) number theory course  ......  We are  not expecting you to understand 
every detail, but  hope that you’re  enjoying the magic hidden in modular arithmetic, and that you’ve 
been pleasantly surprised that this "abstract" mathematics turns out to be so practical.

I will make you do a lot of your own typing in Part I, so that you can have a fair experience fixing errors.
Therefore, in the file you download, the Maple commands which you see in the hardcopy might be gone.

Part I 
The Davis Example:
In this example Bob is going to send a message to Alice.   Davis does not incorporate a secure signature 
like you are going to do, and like we talked about in the handwritten notes, and so I will follow Davis’ 
numbering of the steps on pages 13-14.  We are also going to use his table on page 9 to convert letters to 
numbers.

1)   Alice must create her public key, for Bob to use when he encripts his message to her.  So she picks 
two prime numbers, see page 13:  (p=23 and q=41).  Define p and q using Maple.
> restart: #Just as every time you reopen a file you must 
      # commands into Maple’s memory, you will often
      #want to redo a process in a given file with different
      #data variables.  The restart command clears all of 
      #the current
      

> p:=23;
q:=41;
   #Insert prompts with the [> button on the menu bar.
   #use shift-return for multi-line commands.
   #make definitions with the symbols :=, NOT with =



   #comment lines have # as their first character

 := p 23

 := q 41
2)  Alice defines her modulus to be the product of p and q.  This will be the first piece of her public key. 

> N:=p*q;

 := N 943
3a)  Alice privately computes the auxillary modulus N2:=(p-1)*(q-1), which is related to Euler’s 
theorem, with which Alice will pick her encoding and decoding powers.  No one else will ever see or use
this number.  First she finds a number  e which is relatively prime to N2; this will be the public encoding 
power and she will tell it to the world.  A good e must be relatively prime to (p-1)*(q-1), so that Alice 
will be able to find a decoding power d.  So we check the gcd:  

> N2:=(p-1)*(q-1);
e:=7;

 := N2 880

 := e 7
> gcd(e,880);   #greatest common denominator 
              #-we want it to be 1

1
> ifactor(N2); ifactor(e);
              #for small numbers (only) we can also
              #compare factors to deduce the gcd.
              #How would you find out about these commands if you
              #weren’t sure how to use them, or even if they 
existed?
              #Answer: you would use the Help button at the 
              #top right of the menu.

( ) 2 4 ( ) 5 ( ) 11

( ) 7
7 )  Alice privately finds her "secret" decoding power.  Since she does this step sooner than Davis says, 
we will too.  Since e is relatively prime to (p-1)*(q-1) it has a multiplicative inverse d, mod (p-1)*(q-1).  
By Euler’s Theorem, which Jim talked about yesterday, this d will be the decoding power.  I wouldn’t be
surprised if you’re still amazed and confused by this fact, but like I tell my students in every class, 
confusion is the first step to understanding.  I’d be happy to talk with anyone who wants to understand 
this part of the math better....
> isolve(e*z+y*N2=1);  #isolve stands for "integer solve", 
     #i.e. find integer solutions.  Here the unknowns 
     #are z and y, since we already set e=7 
     #and N2=880  We don’t really care about the y-value, 
     #we just want z.  this is because when we interpret 
     #e*z+y*N2=1 in N2 clock arithmetic, N2=0, so
     #ez=1 mod N2

{ },=y +3 7 _Z1 =z − −377 880 _Z1
> d:=-377 mod N2;



     #using mod N2 will get d back in usual range.
     #We get DAvis’ solution from step 7!

 := d 503
3b)  Now Alice is ready to receive messages.  She yells from the rooftops:  My modulus is N=943.  My 
encryption power is e=7.  If you want to send me a message use the encrypt function:
> encrypt:=x->x^e mod N;
  #if you defined e and N above, 
  #then their values will be used for the encrypt function
  #this command is Maplese for encrypt(x)=x^e mod N.
  #So this is the syntax for defining 
  #elementary functions.

 := encrypt →x modxe N
Note:  In class we’ve been using the letter E for the encrypt function. 

4)  The message which Bob wishes to send Alice is the letter M.  He consults Davis’ table on page 9.  
The number that corresponds to M is 35. 

> M:=35;

 := M 35
5) Bob encrypts the message using Alice’s public key: 
> C:=encrypt(M);  #either of these should work
C:=M^e mod N;

 := C 545

 := C 545
6)  Bob sends the number 545 to Alice.
8)  Alice decodes the message using her decoding power d, which she found in step 7, a while ago.

> decrypt:=y->y^d mod N;

 := decrypt →y modyd N
> decrypt(C);  #both of these should work
C^d mod N;

35

35
Alice consults the table, sees that 35 corresponds to M, and understands what Bob has sent.  WE DID IT! 
Except with Alice’s puny primes our message pieces can only be one letter long, so what we’ve got is 
really no better than a substitution cipher. 

Part II: 
A more practical size.

     In your project everyone will pick primes bigger than 10^50, so that your moduli will be bigger than 
10^(100).  This is still not big enough to be secure, but you will be able to send messages with up to 50 
characters per packet.  (And so that decoding doesn’t get too tedious for all groups,  you will be limited 
to a total message at most 2 packets.)  



     For now we will pick primes bigger than 10^6, and use message packets of 6 characters.  This means 
our message packets will have up to 12 digits per packet, which will be less than our modulus N, since N 
will be greater than 10^12.   

> restart:   #this will clear all old definitions.
           #It’s a good idea to restart when you begin
           #new work - of course you might need to 
           #go back and re-enter some old commands that
           #you need again.  (Repetition is good pedagogy.)

> rand();    #random number generator,
           #default range is between 0 and 12 digits 

427419669081
> bigger:=rand(1..10^51):  #much bigger
bigger();

270343633073697474256143563558458718976746753830539
For now,
> good:=rand(1..10^7):
good();

9669082
> for i from 1 to 50 do
  x1:=good():
   if (x1>10^6         #check number is big enough
      and
    isprime(x1)=true)  #and check if number is prime
    then print(x1);     #if it is, let’s see it
  fi;
od:  
  

9594161

6086539

3675593
It is unlikely your numbers agree with mine.  (Well, in truth everytime I restart I get the same so-called 
random numbers.)  But let’s all use two of mine.  We are repeating the process we worked out in the tiny 
example.)

> p:=9594161;  #I got these with my mouse, by 
             #highlighting with left mouse,
             #clicking cursor, and pasting with
             #middle mouse (at least on our system)  
q:=6086539;
N:=p*q;           #our modulus

 := p 9594161

 := q 6086539

 := N 58395235098779
To see that a system of this size is not secure, try the following command.  This is the command that 
would fail if we had chosen primes of length 200 instead of 12, and that’s the reason RSA is secure 
when you use huge primes.



> ifactor(N);

( ) 9594161 ( ) 6086539
3)  Find an encoding power e
> N2:=(p-1)*(q-1);

 := N2 58395219418080

> for i from 1 to 10 do
   x2:=good();
   if gcd(x2,N2)=1
     then print(x2);
   fi
od:

3570263

9568789

7500443

9376799
> e:=8718977;
gcd(e,N2);   #check relative prime

 := e 8718977

1
7) Get decoding power
> isolve(e*z + y*N2 =1);
   #find decryption power

{ },=y +638358 8718977 _Z1 =z − −4275393257407 58395219418080 _Z1
> d:=-4275393257407 mod N2;
   #use the mouse to copy and paste big numbers

 := d 54119826160673
Technical Point:  When we get to step 6, or certainly step 8 Maple will complain when we try to 
compute large powers of large numbers, so we have to lead it through this modular computation in 
smaller steps. The procedure below does an analgous computation to Davis’, except using powers of 10 
rather than powers of 2.  It’s fine with me if you just use this procedure, but it’s even finer if you can 
understand it.  The encryption algorithm makes use of the digit procedure which picks off the 
coefficients of powers of 10 in the decimal expansion of a number.  So make sure to load digit before 
you load encrypt.
> digit:=(x,n)->trunc(x/10^n)-10*trunc(x/10^(n+1));

 := digit →( ),x n −






trunc

x

10n 10








trunc

x

10
( )+n 1

> digit(123.56,-1);
digit(123.56,2);
digit(123.56,0);
   #check how digit picks off the digits corresponding
   #to powers of 10

5

1



3
> encrypt:= proc(M1,E,N3)  #message, encipher power,modulus
                #we assume all M1’s, E’s have at most 105 digits
    local i,j,  #indices
          L1,   #list of succesive 10th powers of M1
          ans;  #answer
  L1[1]:=M1  mod N3;
  for i from 2 to 105 do
     L1[i]:=L1[i-1]^10 mod N3;
  od:
  ans:=1:    #initialize answer
  for j from 1 to 105 do
     ans:=ans*(L1[j]^digit(E,j-1)) mod N3;
   od:

RETURN(ans);
end:
          
         

> 
Let’s check!!!
> M:=12345678910;

 := M 12345678910
> secret:=encrypt(M,e,N);

 := secret 50406802579480
> encrypt(secret,d,N);
  #decryption is just encryption with a different power

12345678910
YES!!!

Part III
An Actual Message

We Use Davis’ Table on page 9 to encrypt  " I’m Dizzy".  We will need two chunks
> M1:=196749101445;
M2:=62626163;

 := M1 196749101445

 := M2 62626163
> C1:=encrypt(M1,e,N);
C2:=encrypt(M2,e,N);

 := C1 28673555752965

 := C2 22585903410598
> encrypt(C1,d,N);
encrypt(C2,d,N);

196749101445



62626163
> 


