Fractals using iterated function systems, with affine transformations
ACCESS
July 2001

> restart: # fractals use a lot of memory
> Digits:=4:
 # number of significant digits - this will
 # make computations go faster without sacrificing
 # visual accuracy - because IFS's are self correcting.
> with(plots):
 # we want to be able to see our fractals
Warning, the name changecoords has been redefined

The next procedure will take a point \(P = [x, y] \) in the plane and let us compute its image under an affine transformation. We use the same letters for the transformation parameters as we did in the class notes:

\[
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\rightarrow
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
+
\begin{bmatrix}
e \\
f
\end{bmatrix}
\]

> AFFINE1:=proc(X,a,b,c,d,e,f)
 RETURN(evalf([a*X[1]+b*X[2]+e,
end:

You should check that these are the transformations for the Sierpinski triangle

> f1:=P->AFFINE1(P,.5,0,0,.5,.25,.5);
f2:=P->AFFINE1(P,.5,0,0,.5,.5,0);
f3:=P->AFFINE1(P,.5,0,0,.5,0,0);

\[f1 := P \rightarrow AFFINE1(P, 0.5, 0, 0, 0.5, 0.25, 0.5) \]
\[f2 := P \rightarrow AFFINE1(P, 0.5, 0, 0, 0.5, 0.5, 0) \]
\[f3 := P \rightarrow AFFINE1(P, 0.5, 0, 0, 0.5, 0, 0) \]

> S:={[0,0]}: # initial set consisting of one point
> 3^9; # good to keep point numbers below 100,000,
 # because Maple is not the most efficient calculator
 19683

> for i from 1 to 9 do
 S1:=map(f1,S);
 S2:=map(f2,S);
 S3:=map(f3,S);
 S:='union'(S1,S2,S3);
 od:
> pointplot(S,symbol=point,scaling=constrained,
 title='Sierpinski Triangle');
restart:

Digits:=4:
with(plots):

Warning, the name changecoords has been redefined

AFFINE1:=proc(X,a,b,c,d,e,f)
RETURN(evalf([a*X[1]+b*X[2]+e,
end:

The next procedure lets you use different parameters in specifying your affine map. You can scale
the x-direction by r, and rotate it by alpha, then scale the y-direction by s and rotate it by beta. Finally
translate by e and f as before: This is the result:

\[
\begin{bmatrix}
 x \\
 y
\end{bmatrix} = \begin{bmatrix}
 r \cos(\alpha) & -s \sin(\beta) \\
 r \sin(\alpha) & s \cos(\beta)
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix} + \begin{bmatrix}
 e \\
 f
\end{bmatrix}
\]

AFFINE2:=proc(X,r,alpha,s,beta,e,f)
RETURN(AFFINE1(X,r*cos(alpha),-s*sin(beta),
r*sin(alpha),s*cos(beta),e,f));
end:

g1:=P->AFFINE2(P,1/3,0,1/3,0,0,0):
g2:=P->AFFINE2(P,1/3,Pi/3,1/3,Pi/3,1/3,0):
g3:=P->AFFINE2(P,1/3,-Pi/3,1/3,-Pi/3,1/2,sqrt(3)/6):
g4:=P->AFFINE2(P,1/3,0,1/3,0,2/3,0):

\[
\{[0,0]\}\]
S := \{[0,0]\};

for i from 1 to 6 do
 S1 := map(g1,S);
 S2 := map(g2,S);
 S3 := map(g3,S);
 S4 := map(g4,S);
 S := 'union'(S1,S2,S3,S4);
od:

pointplot(S, symbol=point, scaling=constrained, title='Koch Snowflake');