
ACCESS 2001 - RSA
Thursday June14

Our Plan Today:

While the RSA public-key encryption method is still clear in your mind, (NOT?), we will do the
example worked out in the Tom Davis "Cryptography" notes, page 13-14. This should help make things
more concrete. This example uses small numbers and a one-letter message, and Maple will do all of our
computations. I believe this will make the algorithm more clear to you. The explanation of the
Algorithm on page 6-7 of the Rivest-Shamir-Adleman is also a very concise outline which will make
more and more sense as you play with examples.

After we digest Davis’ example we will try somewhat larger prime numbers, to help prepare you for the
part of your group project in which you send yourselves (and me) encoded messages .

We will absolutely stop by 10:00 today so that we have plenty of time to make our way over to JTB 120
for the lecture by Professor Seger at 10:30. If I get carried away start to look like I’m going past 10:00 ,
please stop me. We have all morning tomorrow in the lab so we need not finish this handout today. If
the last couple of days have made you dizzy, I want to remind you that the number theory Jim was
talking about, and the relation to RSA cryptography is usually taught in our 4000-level (typically
junior/senior) number theory course! I am not expecting you to understand every detail, but your
experience should convince you that even something as boring as the integers has magic buried in it.

I will make you do a lot of your own typing in Part I, so that you can have a fair experience fixing errors.
Therefore, in the file you download, the Maple commands which you see in the hardcopy might be gone.

In this example Bob is going to send a message to Alice, so their roles from yesterday’s pictures are
reversed.

Part I
The Davis Example:

1) Remember that Bob must encipher his message to Alice using Alice’s public key, since only Alice
has the tools to decipher such a message. So at some earlier time Alice created her tools as follows:
Alice picked two prime numbers, from page 13: (p=23 and q=41). Define p and q using Maple.

> p:=23;
q:=41;
 #shift-return for multi-line commands.
 #definitions with :=, NOT =

 := p 23

 := q 41
2) Define their product to be the modulus "N" for Alice’s circle algebra, (mod N arithmetic). (N should
turn out to equal 943.)

> N:=p*q;

 := N 943

3a) Compute the number N2:=(p-1)*(q-1), which turns out to be 880. Then pick a number e which is
relatively prime to N2. Check that Davis’ and therefore our choice e:=7 works

> N2:=(p-1)*(q-1);
e:=7;

 := N2 880

 := e 7
> gcd(e,880); #greatest common denominator
ifactor(N2); #integer factor (into primes)
 #how would you find out about these commands if you
 #weren’t sure how to use them, or even if they existed?

1

() 2 4 () 5 () 11
3b) Why do we care about N2 and e? The RSA encryption scheme takes a message (number) "x" and
raise it to the power "e" (mod N). In Mapleese,
> encrypt:=x->x^e mod N;
 #if you defined e and N above,
 #then their values will be used for the encrypt function

 := encrypt →x modxe N
Note: In the picture from yesterday’s notes the letters "e" and "d" were standing for the encryption
functions. Today and in Jim’s lecture yesterday, they denote powers which appear as part of the
encryption and dcryption functions. And the requirement that e and N2 be relatively prime guarantees
that we there is a decrypting power "d" for the decryption function. We return to this point later in the
example.

4) The message which Bob wishes to send is the number M=35. (Davis uses the letter M to stand for
message. We used "x" yesterday in our picture and in our discussion).

According to the table on page 9 this message is the letter "Y". Anyway, define M to be 35.
> M:=35;

 := M 35
5) Encrypt the message, and call the value "C" for ciphertext. Yesterday we called the encrypted
message "y".
> C:=encrypt(M); #either of these should work
C:=M^e mod N;

 := C 545

 := C 545
6) Great, Maple just did this step! Remember from our tables yesterday that multiplying and computing
powers in modular arithmetic is easy because you can always reduce your intermediate terms to be less
than the modulus. That’s why Maple would have no problem, even for huge numbers. Anyway, Alice
gets the message "C" which Bob has encrypted using Alice’s public encryption information.

7) Now Alice will decrypt. So she needs to use the decryption power "d". How did she find "d" when
she was setting up her system? With number theory of course, in particular with Euler’s Theorem. She

wants the decryption and encryption functions to be inverse functions. Since each is going to be a
power function, she wants the formulas

=()Me
d

M
i.e.

=M
()e d

M
to hold in our mod N modular arithmetic. What does d have to satisfy to make this last identity true?
Because M is relatively prime to N=pq we know that M^(N2)=1 mod N, by Euler’s Theorem. Therefore
if e*d = 1 plus a multiple of N2, then M raised to the multiple of N2 power will be 1, and M^(e*d) will
indeed equal M, provided we take both values in the natural set {1,2, ...M-1}. (The last sentence may
need some contemplation in a quiet place.) (And, actually we didn’t need to require M relatively
prime to N, see the explanation on page 7 of the Rivest-Shamir-Adleman paper.) Also, Jim showed us
how to find d using the generalized Euclidean algorithm, and the condition that we can do so is that e
and N2 be relatively prime, exactly the condition we imposed back in step 3. Luckily for us, we don’t
have to program the little loop which does this computation, Maple already has done so.

> isolve(e*d+y*N2=1); #stands for "integer solve", recall
 #we don’t really care what value y is, we just want d

{ },=y +3 7 _N1 =d − −377 880 _N1
N1 is a free parameter in the formual for d. If we take N1=-1, we obtain Davis’ value for d
> d:=-377-880*(-1);

 := d 503
8) The decoding function is given by raising C to the power d (mod N). Davis shows how quickly this
can be done using modular arithmetic.
> decrypt:=y->y^d mod N;

 := decrypt →y modyd N
> decrypt(C); #both of these should work
C^d mod N;

35

35
WE DID IT!
Our message pieces can be no larger than the modulus N, so in the example above we can’t transmit
more than a single letter. (Or, more precisely, a single letter per packet.)

Part II:
A more practical size.

 We need to use somewhat larger numbers if you guys are going to transmit actual messages. We
won’t make them anywhere near the actual sizes that are required for real security, however. Since each
letter uses 2 spaces. If we break our messages into packets of 6 letters then that will 12 digits per packet.
So we want N to have at least 13 digits, so that the packet is smaller than N. It seems hopeless doesn’t
it? But it turns out most of the commands already in Maple

> restart: #this will clear all old definitions.
 #It’s a good idea to restart when you begin

 #new work - of course you might need to
 #go back and re-enter some old commands that
 #you need again

> rand(); #random number generator,
 #default range is between 0 and 12 digits

427419669081
> bigger:=rand(1..10^30): #bigger
bigger();

693270343633073697474256143564
The default size will be bigger than we need. Now let’s get some primes:
> good:=rand(1..10^7):
good();

2291351
> for i from 1 to 100 do
 x:=good():
 if isprime(x)=true #check if number is prime
 then print(x); #if it is, let’s see it
 fi;
od:

7288397

7311323

3411311

520837

6633343

7109903

2505301
It is unlikely your numbers agree with mine. (Well, in truth everytime I restart I get the same so-called
random numbers.) But let’s all use two of mine. We do the RSA procedure in a more compressed form:
Steps 1,2)
> p:=7288397; #I got these with my mouse, by cut and paste
q:=3411311;
N:=p*q; #our modulus

 := p 7288397

 := q 3411311

 := N 24862988858467
To see that a system of this size is not secure, try the following command. This is the command that
would fail if we had chosen primes of length 200 instead of 12, and that’s the reason RSA is secure
when you use huge primes
> ifactor(N); #prime factorization

() 3411311 () 7288397
3) Find an encoding power e
> N2:=(p-1)*(q-1);

 := N2 24862978158760

> for i from 1 to 10 do
 x:=good();
 if gcd(x,N2)=1
 then print(x);
 fi
od:

2159161

8262489

2293629
> e:=2626811;
gcd(e,N2); #check relative prime

 := e 2626811

1
7) Get decoding power (done out of order with notes).
> isolve(e*d + y*N2 =1);
 #find decryption power

{ },=d − −24141644356869 24862978158760 _N1 =y +2550601 2626811 _N1
> d:=-24141644356869 mod N2;
 #use the mouse to copy and paste big numbers

 := d 721333801891
Technical Point: When we get to step 6, or certainly step 8 Maple will complain when we try to
compute large powers of large numbers, so we have to lead it through this modular computation in
smaller steps. The procedure below does an analgous computation to Davis’, except using powers of 10
rather than powers of 2. It’s fine with me if you just use this procedure. The encryption algorithm
makes use of the digit procedure which picks of the coefficients of powers of 10 in the decimal
expansion of a number. So make sure to load digit before you load encrypt.
> digit:=(x,n)->trunc(x/10^n)-10*trunc(x/10^(n+1));

 := digit →(),x n −






trunc

x

10n 10








trunc

x

10
()+n 1

> digit(123.56,-1);
digit(123.56,2);
digit(123.56,0);
 #check how digit picks off the digits corresponding
 #to powers of 10

5

1

3
>
> encrypt:= proc(M1,E,N3) #message, encipher power,modulus
 #we assume all M1’s, E’s have at most 14 digits
 local i,j, #indices
 L1, #list of succesive 10th powers of M1
 ans; #answer
 L1[1]:=M1 mod N3;
 for i from 2 to 14 do

 L1[i]:=L1[i-1]^10 mod N3;
 od:
 ans:=1: #initialize answer
 for j from 1 to 14 do
 ans:=ans*(L1[j]^digit(E,j-1)) mod N3;
 od:

RETURN(ans);
end:

>
Let’s check!!!
> M:=12345;

 := M 12345
> encrypt(M,e,N);

24742637839651
> encrypt(24742637839651,d,N);
 #decryption is just encryption with a different power

12345
YES!!!

Part III
An Actual Message

We Use Davis’ Table on page 9 to encrypt " I’m Dizzy". We will need two chunks
> M1:=19674900;
M2:=1445626261;

 := M1 19674900

 := M2 1445626261
> C1:=encrypt(M1,e,N);
C2:=encrypt(M2,e,N);

 := C1 21347848801116

 := C2 16436422768597
> encrypt(C1,d,N);
encrypt(C2,d,N);

19674900

1445626261
>

