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Schrödinger’s Equation

In quantum mechanics, we begin with the assumption that
Schrödinger’s Equation is true.

Hψ(~x, t) = i~ψt(~x, t)

−
~2

2µ
∆xψ(~x, t) + V (~x, t)ψ(~x, t) = i~ψt(~x, t)

H is called the Hamiltonian Operator. It can be shown that
H is self adjoint if V (~x, t) is real.

H = −
~2

2µ
∆x + V (~x, t)
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The Wave Function

The Schrödinger equation deals with solving something
called the Wave Function ψ(~x, t).

P (~x, t) = ψ̄(~x, t)ψ(~x, t)

P (~x, t) is called the probability density of whatever particle
that we are trying to model. Because of that

∫

RN

P (~x, t) dV N = 1

We define our inner product in this space to be

〈ψ1, ψ2〉 =

∫

RN

ψ̄1ψ2 dV
N
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Time Independant Equation

In most realistic situations, the potential energy does not
depend on time, but depends only on position. That means
that the potential function is V (~x). We can then separate
out time.

ψ(~x, t) = φ(~x)T (t)

−
~2

2µ

∆xφ(~x)

φ(~x)
+ V (~x) = i~

T ′(t)

T (t)
= E

−
~2

2µ
∆xφ(~x) + V (~x)φ(~x) = Eφ(~x) T (t) = e

−iEt

~

This is called the Time Independant Schrödinger Equation
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The Laplacian Operator

The Laplacian operator ∆x in spherical coordinates in RN

can be written

∆x =
∂2

∂r2
+

(N − 1)

r

∂

∂r
+

1

r2
∆SN−1

Where ∆SN−1 is called the Spherical Laplacian which is the
Laplacian on the coordinates of the unit sphere in RN .
If Yℓ(ω) is an eigenfunction of ∆SN−1 with ω ∈ SN−1, such
that ∆x

(

rℓYℓ(ω)
)

= 0, then

ℓ(ℓ− 1)rℓ−2Yℓ(ω) + ℓ(N − 1)rℓ−2Yℓ(ω) + rℓ−2∆SN−1Yℓ(ω) = 0

∆SN−1Yℓ(ω) = −ℓ(ℓ+N − 2)Yℓ(ω)
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Eigenfunctions and Eigenvalues (1)

For the time-independant Schrödinger equation, we have

Hφk(~x) = Ekφk(~x)

Where Ek is the eigenvalue of the eigenfunction φk(~x). Ek

turns out to be the energy associated with φk(~x).
Since H is self-adjoint, there is an orthonormal collection of
eigenfunctions {φk(~x)} that span the space of all possible
wave functions.

∆SN−1Yℓ(ω) = −ℓ(ℓ+N − 2)Yℓ(ω)

We have already observed this eigenfunction-eigenvalue
pair for ∆SN−1 . It is also self adjoint so there is an
orthonormal collection of {Yℓ(ω)}.
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Eigenfunctions and Eigenvalues (2)

If φ(~x) = R(r)Y (ω), then can the hamiltonian H and the
spherical laplacian ∆SN−1 share the same orthonormal
eigenbasis?
Since H and ∆SN−1 are both self adjoint operators, then
they can share the same orthornormal basis if and only if

H∆SN−1 −∆SN−1H = 0

If we do the math, we see that this condition is met if our
potential V in the hamiltonian H is only a function of r. To
continue, we will now use the potential V (r) so that we can
use a common eigenbasis for H and ∆SN−1 .

H = −
~2

2µ

(

∂2

∂r2
+

(N − 1)

r

∂

∂r
+

1

r2
∆SN−1

)

+ V (r)

Solving the Hydrogen Atom in Quantum Mechanics – p. 7



Separate Radial Component

We have already made the assumption that

φk,ℓ(~x) = Rk,ℓ(r)Yℓ(ω)

When we apply the Hamiltonian operator H on φk,ℓ(~x), we
get two differential equations to solve for.

0 = R′′

k,ℓ(r) +
(N − 1)

r
R′

k,ℓ(r)

+

(

2µEk,ℓ

~2
−

2µ

~2
V (r)−

ℓ(ℓ+N − 2)

r2

)

Rk,ℓ(r)

∆SN−1Yℓ(ω) = −ℓ(ℓ+ n− 2)Yℓ(ω)
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Possible Potentials

We have

0 = R′′

k,ℓ(r) +
(N − 1)

r
R′

k,ℓ(r)

+

(

2µEk,ℓ

~2
−

2µ

~2
V (r)−

ℓ(ℓ+N − 2)

r2

)

Rk,ℓ(r)

We notice that the solution of Rk,ℓ(r) depends heavily on
V (r). Some common potentials are:

V (r) = α
r Radial Electric Potential

V (r) = αr2 3D Harmonic Oscillator
V (r) = 0 Vacuum

We will look at V (r) = − e2

4πǫ0r
to solve for Hydrogen.
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Simplifying The ODE (1)

Since we defined V (r) in such a way that V (r) ≤ 0 and
V (r) → 0 as r → ∞, then if we want to study the bound
states of the electron in orbit about a proton (i.e. Hydrogen),
then the energy of the electron must be negative.

Ek,l ≤ 0

First simplification is to say that we are working in three
dimensions so N = 3. Other simplifications include defining

Γ2
k,ℓ = −2µEk,ℓ

~2
and β = 2µe2

4πǫ0~2
. Substituting V (r) = e2

4µǫ0r
, we

get

R′′

k,ℓ(r) +
2

r
R′

k,ℓ(r)−

(

Γ2
k,ℓ −

β

r
+
ℓ(ℓ+ 1)

r2

)

Rk,ℓ(r) = 0
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Simplifying The ODE (2)

We will perform a change of variable uk,ℓ(r) = rRk,ℓ(r)

R′

k,ℓ(r) =
1

r
u′k,ℓ(r)−

1

r2
uk,ℓ(r)

R′′

k,ℓ(r) =
1

r
u′′k,ℓ(r)−

2

r2
u′k,ℓ(r) +

2

r3
uk,ℓ(r)

=
1

r
u′′k,ℓ(r)−

2

r
R′

k,ℓ(r)

R′′

k,ℓ(r) +
2

r
R′

k,ℓ(r)−

(

Γ2
k,ℓ −

β

r
+
ℓ(ℓ+ 1)

r2

)

Rk,ℓ(r) = 0

⇒ u′′k,ℓ(r)−

(

Γ2
k,ℓ −

β

r
+
ℓ(ℓ+ 1)

r2

)

uk,ℓ(r) = 0
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Asymptotic Behavior (1)

u′′k,ℓ(r)−

(

Γ2
k,ℓ −

β

r
+
ℓ(ℓ+ 1)

r2

)

uk,ℓ(r) = 0

We will now define u∞(r) as the asymptotic behavior of
uk,ℓ(r) as r → ∞. As r → ∞, we get

u′′
∞
(r)− Γ2

k,ℓu∞(r) = 0

u∞(r) = Ae−rΓk,ℓ +BerΓk,ℓ

We can set B = 0 because the erΓk,ℓ term is not
normalizable. We can set A = 1 because we are only
interested in the asymptotic behavior.

u∞(r) = e−rΓk,ℓ
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Simplifying The ODE (3)

We will attempt to remove the asymptotic behavior by
separating it out using another change of variable.

uk,ℓ(r) = e−rΓk,ℓξk,ℓ(r)

u′k,ℓ(r) = e−rΓk,ℓ
(

ξ′k,ℓ(r)− Γk,ℓξk,ℓ(r)
)

u′′k,ℓ(r) = e−rΓk,ℓ
(

ξ′′k,ℓ(r)− 2Γk,ℓξ
′

k,ℓ(r) + Γ2
k,ℓξk,ℓ(r)

)

Plugging in this change of variable, we get

ξ′′k,ℓ(r)− 2Γk,ℓξ
′

k,ℓ(r) +

(

β

r
−
ℓ(ℓ+ 1)

r2

)

ξk,ℓ(r) = 0
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Solving The ODE (1)

ξ′′k,ℓ(r)− 2Γk,ℓξ
′

k,ℓ(r) +

(

β

r
−
ℓ(ℓ+ 1)

r2

)

ξk,ℓ(r) = 0

To solve this equation, we will guess ξk,ℓ to be a power
series

ξk,ℓ =

∞
∑

q=0

cqr
q+s

ξ′k,ℓ =

∞
∑

q=0

cq(q + s)rq+s−1

ξ′′k,ℓ =

∞
∑

q=0

cq(q + s)(q + s− 1)rq+s−2

Solving the Hydrogen Atom in Quantum Mechanics – p. 14



Solving The ODE (2)

∞
∑

q=0

cq

[

(q + s)(q + s− 1)rq+s−2 − 2Γk,ℓ(q + s)rq+s−1

+βrq+s−1 − ℓ(ℓ+ 1)rq+s−2

]

= 0

∞
∑

q=0

cqr
q+s−2

(

(q + s)(q + s− 1)− ℓ(ℓ+ 1)

)

+

∞
∑

q=1

cq−1r
q+s−2

(

β − 2(q + s)Γk,ℓ

)

= 0
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Solving The ODE (3)

∞
∑

q=0

cqr
q+s−2

(

(q + s)(q + s− 1)− ℓ(ℓ+ 1)

)

+

∞
∑

q=1

cq−1r
q+s−2

(

β − 2(q + s)Γk,ℓ

)

= 0

Consider q = 0, we get

c0 (s(s− 1)− ℓ(ℓ+ 1)) = 0

⇒ s = {ℓ+ 1,−ℓ}

The only answer that works is s = ℓ+ 1.
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Solving The ODE (4)

∞
∑

q=0

cqq(q+2ℓ+1)rq+ℓ−1+

∞
∑

q=1

cq−1r
q+ℓ−1

(

β−2(q+ℓ+1)Γk,ℓ

)

= 0

Consider q > 0

cqq(q + 2ℓ+ 1) + cq−1

(

β − 2(q + ℓ+ 1)Γk,ℓ

)

= 0

⇒ cq = cq−1

2(q + ℓ+ 1)Γk,ℓ − β

q(q + 2ℓ+ 1)
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Asymptotic Behavior (2)

Consider the asymptotic behavior of cq
cq−1

as r → ∞.

cq

cq−1

→
2Γk,ℓ

q

⇒ ξk,ℓ(r) →

∞
∑

q=0

(2Γk,ℓ)
q

q!
rq = e2rΓk,ℓ
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