Solving the Hydrogen Atom in Quantum Mechanics

Michael Bentley

Schrödinger's Equation

In quantum mechanics, we begin with the assumption that Schrödinger's Equation is true.

$$
\begin{gathered}
H \psi(\vec{x}, t)=i \hbar \psi_{t}(\vec{x}, t) \\
-\frac{\hbar^{2}}{2 \mu} \Delta_{x} \psi(\vec{x}, t)+V(\vec{x}, t) \psi(\vec{x}, t)=i \hbar \psi_{t}(\vec{x}, t)
\end{gathered}
$$

H is called the Hamiltonian Operator. It can be shown that H is self adjoint if $V(\vec{x}, t)$ is real.

$$
H=-\frac{\hbar^{2}}{2 \mu} \Delta_{x}+V(\vec{x}, t)
$$

The Wave Function

The Schrödinger equation deals with solving something called the Wave Function $\psi(\vec{x}, t)$.

$$
P(\vec{x}, t)=\bar{\psi}(\vec{x}, t) \psi(\vec{x}, t)
$$

$P(\vec{x}, t)$ is called the probability density of whatever particle that we are trying to model. Because of that

$$
\int_{\mathbb{R}^{N}} P(\vec{x}, t) \mathrm{d} V^{N}=1
$$

We define our inner product in this space to be

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle=\int_{\mathbb{R}^{N}} \bar{\psi}_{1} \psi_{2} \mathrm{~d} V^{N}
$$

Time Independant Equation

In most realistic situations, the potential energy does not depend on time, but depends only on position. That means that the potential function is $V(\vec{x})$. We can then separate out time.

$$
\begin{gathered}
\psi(\vec{x}, t)=\phi(\vec{x}) T(t) \\
-\frac{\hbar^{2}}{2 \mu} \frac{\Delta_{x} \phi(\vec{x})}{\phi(\vec{x})}+V(\vec{x})=i \hbar \frac{T^{\prime}(t)}{T(t)}=E \\
-\frac{\hbar^{2}}{2 \mu} \Delta_{x} \phi(\vec{x})+V(\vec{x}) \phi(\vec{x})=E \phi(\vec{x}) \quad T(t)=e^{\frac{-i E t}{\hbar}}
\end{gathered}
$$

This is called the Time Independant Schrödinger Equation

The Laplacian Operator

The Laplacian operator Δ_{x} in spherical coordinates in \mathbb{R}^{N} can be written

$$
\Delta_{x}=\frac{\partial^{2}}{\partial r^{2}}+\frac{(N-1)}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta_{S^{N-1}}
$$

Where $\Delta_{S^{N-1}}$ is called the Spherical Laplacian which is the Laplacian on the coordinates of the unit sphere in \mathbb{R}^{N}. If $Y_{\ell}(\omega)$ is an eigenfunction of $\Delta_{S^{N-1}}$ with $\omega \in S^{N-1}$, such that $\Delta_{x}\left(r^{\ell} Y_{\ell}(\omega)\right)=0$, then

$$
\begin{gathered}
\ell(\ell-1) r^{\ell-2} Y_{\ell}(\omega)+\ell(N-1) r^{\ell-2} Y_{\ell}(\omega)+r^{\ell-2} \Delta_{S^{N-1}} Y_{\ell}(\omega)=0 \\
\Delta_{S^{N-1}} Y_{\ell}(\omega)=-\ell(\ell+N-2) Y_{\ell}(\omega)
\end{gathered}
$$

Eigenfunctions and Eigenvalues (1)

For the time-independant Schrödinger equation, we have

$$
H \phi_{k}(\vec{x})=E_{k} \phi_{k}(\vec{x})
$$

Where E_{k} is the eigenvalue of the eigenfunction $\phi_{k}(\vec{x}) . E_{k}$ turns out to be the energy associated with $\phi_{k}(\vec{x})$.
Since H is self-adjoint, there is an orthonormal collection of eigenfunctions $\left\{\phi_{k}(\vec{x})\right\}$ that span the space of all possible wave functions.

$$
\Delta_{S^{N-1}} Y_{\ell}(\omega)=-\ell(\ell+N-2) Y_{\ell}(\omega)
$$

We have already observed this eigenfunction-eigenvalue pair for $\Delta_{S^{N-1}}$. It is also self adjoint so there is an orthonormal collection of $\left\{Y_{\ell}(\omega)\right\}$.

Eigenfunctions and Eigenvalues (2)

If $\phi(\vec{x})=R(r) Y(\omega)$, then can the hamiltonian H and the spherical laplacian $\Delta_{S^{N-1}}$ share the same orthonormal eigenbasis?
Since H and $\Delta_{S^{N-1}}$ are both self adjoint operators, then they can share the same orthornormal basis if and only if

$$
H \Delta_{S^{N-1}}-\Delta_{S^{N-1}} H=0
$$

If we do the math, we see that this condition is met if our potential V in the hamiltonian H is only a function of r. To continue, we will now use the potential $V(r)$ so that we can use a common eigenbasis for H and $\Delta_{S^{N-1}}$.

$$
H=-\frac{\hbar^{2}}{2 \mu}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{(N-1)}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta_{S^{N-1}}\right)+V(r)
$$

Separate Radial Component

We have already made the assumption that

$$
\phi_{k, \ell}(\vec{x})=R_{k, \ell}(r) Y_{\ell}(\omega)
$$

When we apply the Hamiltonian operator H on $\phi_{k, \ell}(\vec{x})$, we get two differential equations to solve for.

$$
\begin{aligned}
& 0= R_{k, \ell}^{\prime \prime}(r)+\frac{(N-1)}{r} R_{k, \ell}^{\prime}(r) \\
&+\left(\frac{2 \mu E_{k, \ell}}{\hbar^{2}}-\frac{2 \mu}{\hbar^{2}} V(r)-\frac{\ell(\ell+N-2)}{r^{2}}\right) R_{k, \ell}(r) \\
& \Delta_{S^{N-1}} Y_{\ell}(\omega)=-\ell(\ell+n-2) Y_{\ell}(\omega)
\end{aligned}
$$

Possible Potentials

We have

$$
\begin{aligned}
0= & R_{k, \ell}^{\prime \prime}(r)+\frac{(N-1)}{r} R_{k, \ell}^{\prime}(r) \\
& +\left(\frac{2 \mu E_{k, \ell}}{\hbar^{2}}-\frac{2 \mu}{\hbar^{2}} V(r)-\frac{\ell(\ell+N-2)}{r^{2}}\right) R_{k, \ell}(r)
\end{aligned}
$$

We notice that the solution of $R_{k, \ell}(r)$ depends heavily on $V(r)$. Some common potentials are:

$$
\begin{array}{ll}
V(r)=\frac{\alpha}{r} & \text { Radial Electric Potential } \\
V(r)=\alpha r^{2} & \text { 3D Harmonic Oscillator } \\
V(r)=0 & \text { Vacuum }
\end{array}
$$

We will look at $V(r)=-\frac{e^{2}}{4 \pi \epsilon_{0} r}$ to solve for Hydrogen.

Simplifying The ODE (1)

Since we defined $V(r)$ in such a way that $V(r) \leq 0$ and $V(r) \rightarrow 0$ as $r \rightarrow \infty$, then if we want to study the bound states of the electron in orbit about a proton (i.e. Hydrogen), then the energy of the electron must be negative.

$$
E_{k, l} \leq 0
$$

First simplification is to say that we are working in three dimensions so $N=3$. Other simplifications include defining $\Gamma_{k, \ell}^{2}=-\frac{2 \mu E_{k, \ell}}{\hbar^{2}}$ and $\beta=\frac{2 \mu e^{2}}{4 \pi \epsilon_{0} \hbar^{2}}$. Substituting $V(r)=\frac{e^{2}}{4 \mu \epsilon_{0} r}$, we get

$$
R_{k, \ell}^{\prime \prime}(r)+\frac{2}{r} R_{k, \ell}^{\prime}(r)-\left(\Gamma_{k, \ell}^{2}-\frac{\beta}{r}+\frac{\ell(\ell+1)}{r^{2}}\right) R_{k, \ell}(r)=0
$$

Simplifying The ODE (2)

We will perform a change of variable $u_{k, \ell}(r)=r R_{k, \ell}(r)$

$$
\begin{aligned}
& R_{k, \ell}^{\prime}(r)=\frac{1}{r} u_{k, \ell}^{\prime}(r)-\frac{1}{r^{2}} u_{k, \ell}(r) \\
& R_{k, \ell}^{\prime \prime}(r)=\frac{1}{r} u_{k, \ell}^{\prime \prime}(r)-\frac{2}{r^{2}} u_{k, \ell}^{\prime}(r)+\frac{2}{r^{3}} u_{k, \ell}(r) \\
&=\frac{1}{r} u_{k, \ell}^{\prime \prime}(r)-\frac{2}{r} R_{k, \ell}^{\prime}(r) \\
& R_{k, \ell}^{\prime \prime}(r)+\frac{2}{r} R_{k, \ell}^{\prime}(r)-\left(\Gamma_{k, \ell}^{2}-\frac{\beta}{r}+\frac{\ell(\ell+1)}{r^{2}}\right) R_{k, \ell}(r)=0 \\
& \Rightarrow u_{k, \ell}^{\prime \prime}(r)-\left(\Gamma_{k, \ell}^{2}-\frac{\beta}{r}+\frac{\ell(\ell+1)}{r^{2}}\right) u_{k, \ell}(r)=0
\end{aligned}
$$

Asymptotic Behavior (1)

$$
u_{k, \ell}^{\prime \prime}(r)-\left(\Gamma_{k, \ell}^{2}-\frac{\beta}{r}+\frac{\ell(\ell+1)}{r^{2}}\right) u_{k, \ell}(r)=0
$$

We will now define $u_{\infty}(r)$ as the asymptotic behavior of $u_{k, \ell}(r)$ as $r \rightarrow \infty$. As $r \rightarrow \infty$, we get

$$
\begin{gathered}
u_{\infty}^{\prime \prime}(r)-\Gamma_{k, \ell}^{2} u_{\infty}(r)=0 \\
u_{\infty}(r)=A e^{-r \Gamma_{k, \ell}}+B e^{r \Gamma_{k, \ell}}
\end{gathered}
$$

We can set $B=0$ because the $e^{r \Gamma k, \ell}$ term is not normalizable. We can set $A=1$ because we are only interested in the asymptotic behavior.

$$
u_{\infty}(r)=e^{-r \Gamma_{k, \ell}}
$$

Simplifying The ODE (3)

We will attempt to remove the asymptotic behavior by separating it out using another change of variable.

$$
\begin{aligned}
u_{k, \ell}(r) & =e^{-r \Gamma_{k, \ell}} \xi_{k, \ell}(r) \\
u_{k, \ell}^{\prime}(r) & =e^{-r \Gamma_{k, \ell}}\left(\xi_{k, \ell}^{\prime}(r)-\Gamma_{k, \ell} \xi_{k, \ell}(r)\right) \\
u_{k, \ell}^{\prime \prime}(r) & =e^{-r \Gamma_{k, \ell}}\left(\xi_{k, \ell}^{\prime \prime}(r)-2 \Gamma_{k, \ell} \xi_{k, \ell}^{\prime}(r)+\Gamma_{k, \ell}^{2} \xi_{k, \ell}(r)\right)
\end{aligned}
$$

Plugging in this change of variable, we get

$$
\xi_{k, \ell}^{\prime \prime}(r)-2 \Gamma_{k, \ell} \xi_{k, \ell}^{\prime}(r)+\left(\frac{\beta}{r}-\frac{\ell(\ell+1)}{r^{2}}\right) \xi_{k, \ell}(r)=0
$$

Solving The ODE (1)

$$
\xi_{k, \ell}^{\prime \prime}(r)-2 \Gamma_{k, \ell} \xi_{k, \ell}^{\prime}(r)+\left(\frac{\beta}{r}-\frac{\ell(\ell+1)}{r^{2}}\right) \xi_{k, \ell}(r)=0
$$

To solve this equation, we will guess $\xi_{k, \ell}$ to be a power series

$$
\begin{aligned}
\xi_{k, \ell} & =\sum_{q=0}^{\infty} c_{q} r^{q+s} \\
\xi_{k, \ell}^{\prime} & =\sum_{q=0}^{\infty} c_{q}(q+s) r^{q+s-1} \\
\xi_{k, \ell}^{\prime \prime} & =\sum_{q=0}^{\infty} c_{q}(q+s)(q+s-1) r^{q+s-2}
\end{aligned}
$$

Solving The ODE (2)

$$
\begin{aligned}
& \sum_{q=0}^{\infty} c_{q}\left[(q+s)(q+s-1) r^{q+s-2}-2 \Gamma_{k, \ell}(q+s) r^{q+s-1}\right. \\
& \left.+\beta r^{q+s-1}-\ell(\ell+1) r^{q+s-2}\right]=0 \\
& \sum_{q=0}^{\infty} c_{q} r^{q^{q+s-2}((q+s)(q+s-1)-\ell(\ell+1))} \\
& +\sum_{q=1}^{\infty} c_{q-1} r^{q+s-2}\left(\beta-2(q+s) \Gamma_{k, \ell}\right)=0
\end{aligned}
$$

Solving The ODE (3)

$$
\begin{aligned}
\sum_{q=0}^{\infty} c_{q} r^{q+s-2}((q+s) & (q+s-1)-\ell(\ell+1)) \\
& +\sum_{q=1}^{\infty} c_{q-1} r^{q+s-2}\left(\beta-2(q+s) \Gamma_{k, \ell}\right)=0
\end{aligned}
$$

Consider $q=0$, we get

$$
\begin{gathered}
c_{0}(s(s-1)-\ell(\ell+1))=0 \\
\Rightarrow s=\{\ell+1,-\ell\}
\end{gathered}
$$

The only answer that works is $s=\ell+1$.

Solving The ODE (4)

$\sum_{q=0}^{\infty} c_{q} q(q+2 \ell+1) r^{q+\ell-1}+\sum_{q=1}^{\infty} c_{q-1} r^{q+\ell-1}\left(\beta-2(q+\ell+1) \Gamma_{k, \ell}\right)=0$
Consider $q>0$

$$
\begin{gathered}
c_{q} q(q+2 \ell+1)+c_{q-1}\left(\beta-2(q+\ell+1) \Gamma_{k, \ell}\right)=0 \\
\Rightarrow c_{q}=c_{q-1} \frac{2(q+\ell+1) \Gamma_{k, \ell}-\beta}{q(q+2 \ell+1)}
\end{gathered}
$$

Asymptotic Behavior (2)

Consider the asymptotic behavior of $\frac{c_{q}}{c_{q-1}}$ as $r \rightarrow \infty$.

$$
\begin{aligned}
\frac{c_{q}}{c_{q-1}} & \rightarrow \frac{2 \Gamma_{k, \ell}}{q} \\
\Rightarrow \xi_{k, \ell}(r) & \rightarrow \sum_{q=0}^{\infty} \frac{\left(2 \Gamma_{k, \ell}\right)^{q}}{q!} r^{q}=e^{2 r \Gamma_{k, \ell}}
\end{aligned}
$$

