Slinky computations in Maple

 \rightarrow Digits := 4;

> m := .225; #mass in kilograms $mperloop := \frac{m}{89}$; #slinky has 89 loops

g := 9.8 # acceleration of gravity in mks units

$$m := 0.225$$
 $mperloop := 0.002528$
 $g := 9.8$

> $T := .2 \cdot g$; #approx force of gravity on 79 of the links

$$T := 1.96$$
 (3)

(1)

(2)

> l := .0315; #separation of one loop experiencing T; $L := l \cdot 87$; #number of loops we will use; Lenglish := $L \cdot 39.37$; #length in inches $rho := \frac{mperloop}{l}$; #density

$$l := 0.0315$$

 $L := 2.740$
 $Lenglish := 107.9$

$$\rho := 0.08025$$
 (4)

 $> c := \operatorname{sqrt}\left(\frac{T}{\operatorname{rho}}\right); \text{ #theoretical wave speed}$

$$c := 4.942$$
 (5)

> $P := \frac{2 \cdot L}{c}$; #theoretical period in seconds

$$P := 1.109$$
 (6)

>