The Effect of Dissipation on the Transformation-Based Approximate Electromagnetic Cloaking Scheme

Andy Thaler

Department of Mathematics University of Utah

Math 5440

December 8, 2010

Outline

- Helmholtz Equation
 - In 2D, models the propagation of TE and TM waves
 - In 3D, models the propagation of acoustic waves
- Cloaking for the 2D Helmholtz Equation
 - Boundary Measurements Map
 - Definition of Cloaking
 - Main Idea Behind Transformation-Based Cloaking
 - Dissipation and Results

Wave Equation

Maxwell's Equations imply that the electric field satisfies the wave equation, namely

$$\nabla^2 \mathbf{E} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

Assuming the waves are traveling in the y-direction, the solution is of the following form:

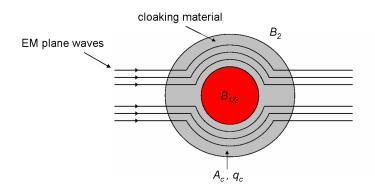
$$\mathbf{E}(y,t) = \operatorname{Re}\left[\widetilde{\mathbf{E}}_{0}e^{i(ky-\omega t)}\right]$$

Helmholtz Equation

$$\nabla \cdot [A(\mathbf{x})\nabla u(\mathbf{x})] + \omega^2 q(\mathbf{x})u(\mathbf{x}) = 0$$

- **1** When derived from Maxwell's Equations, $A(\mathbf{x})$ and $q(\mathbf{x})$ are related to $\mu(\mathbf{x})$ and $\epsilon(\mathbf{x})$.
- u represents the longitudinal component of the electric field (TM waves) or the magnetic field (TE waves).
- In 2D, it models the propagation of monochromatic electromagnetic transverse plane waves.
- In 3D, it models the propagation of acoustic waves.

What is Cloaking?



- Assume radial symmetry
- Cloak against plane waves

Boundary Measurements Map

$$\nabla \cdot [A(\mathbf{x})\nabla u(\mathbf{x})] + \omega^2 q(\mathbf{x})u(\mathbf{x}) = 0$$

- We consider B_2 .
- Maps field to flux for the Helmholtz equation.
- We used the inverse of this map (more stable numerically).

Definition (Boundary Measurements Map)

The boundary measurements map associated with the Helmholtz equation is defined by:

$$\Lambda_{A,q}(u) = (A\nabla u) \cdot \nu \,, \tag{1}$$

where ν is the outward normal vector of B_2 , and $\nu(\mathbf{x}) = \frac{\mathbf{x}}{2}$ for $\mathbf{x} \in \partial B_2$.

Invariance Principle

$$\nabla_{\mathbf{x}} \cdot [A(\mathbf{x})\nabla_{\mathbf{x}}u(\mathbf{x})] + \omega^2 q(\mathbf{x})u(\mathbf{x}) = 0$$

F: $B2 \rightarrow B2$, smooth enough, $\mathbf{F}(\mathbf{x}) = \mathbf{x}$ on ∂B_2 .

Changing variables with $\mathbf{y} = \mathbf{F}(\mathbf{x})$ gives

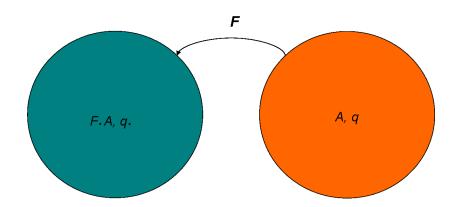
$$\nabla_{\mathbf{y}} \cdot [F_* A(\mathbf{y}) \nabla_{\mathbf{y}} v(\mathbf{y})] + \omega^2 q_*(\mathbf{y}) v(\mathbf{y}) = 0,$$

where $v(\mathbf{y}) = u[\mathbf{F}^{-1}(\mathbf{y})].$

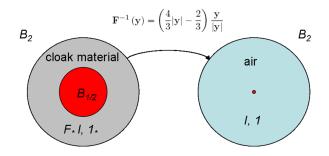
Also,

$$\Lambda_{A, q} = \Lambda_{F_* A, q_*}$$

Invariance Principle



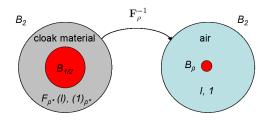
Transformation-Based Cloaking Proposed by Pendry



$$\Lambda_{F_*I,1_*} = \Lambda_{I,1}$$

$$A(\mathbf{x}), q(\mathbf{x}) = \left\{ egin{array}{ll} F_*I, 1_* & ext{in } B_2 \setminus B_{1/2} \ ext{arbitrary real} & ext{in } B_{1/2} \end{array}
ight.$$

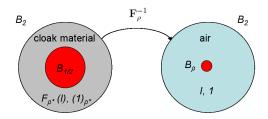
Transformation-Based Approximate Cloaking Scheme



$$\Lambda_{A,q} = \Lambda_{A_{\rho},q_{\rho}}$$

$$\mathbf{F}_{\rho}^{-1}(\mathbf{y}) = \left\{ \begin{array}{cc} 2\rho\,\mathbf{y} & \text{for } |\mathbf{y}| < \frac{1}{2} \\ \left[2 - \frac{4\left(2 - \rho\right)}{3} + \frac{2\left(2 - \rho\right)}{3}|\mathbf{y}|\right] \frac{\mathbf{y}}{|\mathbf{y}|} & \text{for } \frac{1}{2} \leq |\mathbf{y}| \leq 2 \,. \end{array} \right.$$

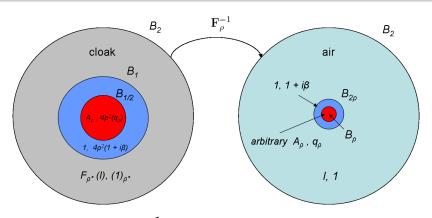
Transformation-Based Approximate Cloaking Scheme



$$\Lambda_{A,q} = \Lambda_{A_{\rho},q_{\rho}}
eq \Lambda_{I,1}$$

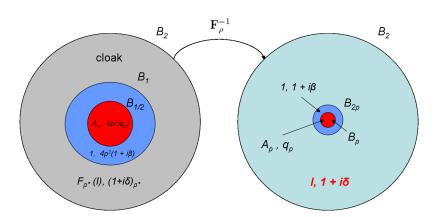
$$\mathbf{F}_{\rho}^{-1}(\mathbf{y}) = \left\{ \begin{array}{cc} 2\rho\,\mathbf{y} & \text{for } |\mathbf{y}| < \frac{1}{2} \\ \left[2 - \frac{4\left(2 - \rho\right)}{3} + \frac{2\left(2 - \rho\right)}{3}|\mathbf{y}|\right] \frac{\mathbf{y}}{|\mathbf{y}|} & \text{for } \frac{1}{2} \leq |\mathbf{y}| \leq 2 \,. \end{array} \right.$$

Kohn, Onofrei, Vogelius, and Weinstein

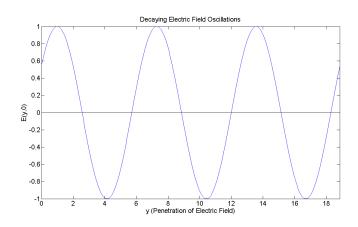


- ② In 3D, error $\sim \rho$.

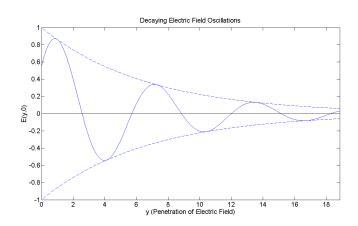
Dissipation



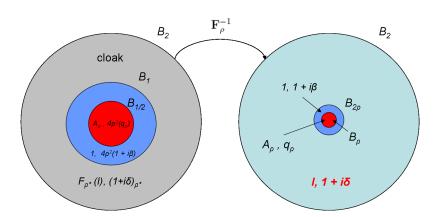
Effect of Dissipation



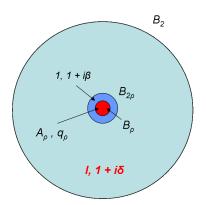
Effect of Dissipation



Step 1-Mapping



Step 2-Setup



Step 2–Setup

$$\begin{cases}
(a) \nabla^{2} u_{1}(\mathbf{x}) + \omega^{2} \frac{q_{\rho}}{A_{\rho}} u_{1}(\mathbf{x}) = 0 & \text{in } B_{\rho} \\
(b) \nabla^{2} u_{2}(\mathbf{x}) + \omega^{2} (1 + i\beta) u_{2}(\mathbf{x}) = 0 & \text{in } B_{2\rho} \setminus B_{\rho} \\
(c) \nabla^{2} u_{3}(\mathbf{x}) + \omega^{2} (1 + i\delta) u_{3}(\mathbf{x}) = 0 & \text{in } B_{2} \setminus B_{2\rho} \\
(d) u_{1}(\rho, \theta) = u_{2}(\rho, \theta); \quad A_{\rho} \frac{\partial u_{1}}{\partial r}(\rho, \theta) = \frac{\partial u_{2}}{\partial r}(\rho, \theta) & \text{on } \partial B_{\rho} \\
(e) u_{2}(2\rho, \theta) = u_{3}(2\rho, \theta); \quad \frac{\partial u_{2}}{\partial r}(2\rho, \theta) = \frac{\partial u_{3}}{\partial r}(2\rho, \theta) & \text{on } \partial B_{2\rho} \\
(f) \frac{\partial u_{3}}{\partial r}(2, \theta) = \psi & \text{on } \partial B_{2}
\end{cases}$$

Step 2–Setup

$$q_{\rho} = \frac{z_{e}J_{0}(\omega\rho) \left[J'_{0}(\omega z_{e}\rho) \left(H_{0}^{(1)}\right)'(2\omega z_{e}) - J'_{0}(2\omega z_{e}) \left(H_{0}^{(1)}\right)'(\omega z_{e}\rho)\right]}{J'_{0}(\omega\rho) \left[J_{0}(\omega z_{e}\rho) \left(H_{0}^{(1)}\right)'(2\omega z_{e}) - J'_{0}(2\omega z_{e})H_{0}^{(1)}(\omega z_{e}\rho)\right]}$$

$$A_{\rho} = q_{\rho}I$$

Step 2-Setup

$$q_{\rho} = \frac{z_{e}J_{0}(\omega\rho) \left[J'_{0}(\omega z_{e}\rho) \left(H_{0}^{(1)} \right)' (2\omega z_{e}) - J'_{0}(2\omega z_{e}) \left(H_{0}^{(1)} \right)' (\omega z_{e}\rho) \right]}{J'_{0}(\omega\rho) \left[J_{0}(\omega z_{e}\rho) \left(H_{0}^{(1)} \right)' (2\omega z_{e}) - J'_{0}(2\omega z_{e}) H_{0}^{(1)}(\omega z_{e}\rho) \right]}$$

$$A_{\rho} = q_{\rho}I$$

•
$$z_e = 1 + i\delta$$

Step 2–Setup

$$q_{\rho} = \frac{z_{e}J_{0}(\omega\rho) \left[J'_{0}(\omega z_{e}\rho) \left(H_{0}^{(1)} \right)' (2\omega z_{e}) - J'_{0}(2\omega z_{e}) \left(H_{0}^{(1)} \right)' (\omega z_{e}\rho) \right]}{J'_{0}(\omega\rho) \left[J_{0}(\omega z_{e}\rho) \left(H_{0}^{(1)} \right)' (2\omega z_{e}) - J'_{0}(2\omega z_{e}) H_{0}^{(1)}(\omega z_{e}\rho) \right]}$$

$$A_{\rho}=q_{
ho}I$$

- $z_0 = 1 + i\delta$
- $\delta > 0$ denotes the dissipation level in the annulus $B_2 \setminus B_{2\rho}$

Step 2–Setup

$$q_{\rho} = \frac{z_{e}J_{0}(\omega\rho) \left[J'_{0}(\omega z_{e}\rho) \left(H_{0}^{(1)} \right)' (2\omega z_{e}) - J'_{0}(2\omega z_{e}) \left(H_{0}^{(1)} \right)' (\omega z_{e}\rho) \right]}{J'_{0}(\omega\rho) \left[J_{0}(\omega z_{e}\rho) \left(H_{0}^{(1)} \right)' (2\omega z_{e}) - J'_{0}(2\omega z_{e}) H_{0}^{(1)}(\omega z_{e}\rho) \right]}$$

$$A_{
ho} = q_{
ho}I$$

- $z_e = 1 + i\delta$
- $\delta > 0$ denotes the dissipation level in the annulus $B_2 \setminus B_{2\rho}$
- ψ is the normal derivative of the incoming plane wave on ∂B_2

Let
$$u_1(r,\theta) = R(r)\Theta(\theta)$$
. Then we have

$$\nabla^2 u_1 + \omega^2 \frac{q_\rho}{A_\rho} u_1 = 0$$

Let
$$u_1(r,\theta) = R(r)\Theta(\theta)$$
. Then we have

$$\begin{split} \nabla^2 u_1 + \omega^2 \frac{q_\rho}{A_\rho} u_1 &= 0 \\ \Leftrightarrow \frac{\partial^2 u_1}{\partial r^2} + \frac{1}{r} \frac{\partial u_1}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u_1}{\partial \theta^2} + \omega^2 \frac{q_\rho}{A_\rho} u_1 &= 0 \end{split}$$

Let
$$u_1(r,\theta) = R(r)\Theta(\theta)$$
. Then we have

$$\begin{split} \nabla^2 u_1 + \omega^2 \frac{q_\rho}{A_\rho} u_1 &= 0 \\ \Leftrightarrow \frac{\partial^2 u_1}{\partial r^2} + \frac{1}{r} \frac{\partial u_1}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u_1}{\partial \theta^2} + \omega^2 \frac{q_\rho}{A_\rho} u_1 &= 0 \\ \Leftrightarrow R''\Theta + \frac{1}{r} R'\Theta + \frac{1}{r^2} R\Theta'' + \omega^2 \frac{q_\rho}{A_\rho} R\Theta &= 0 \end{split}$$

Let $u_1(r,\theta) = R(r)\Theta(\theta)$. Then we have

$$\nabla^{2}u_{1} + \omega^{2}\frac{q_{\rho}}{A_{\rho}}u_{1} = 0$$

$$\Leftrightarrow \frac{\partial^{2}u_{1}}{\partial r^{2}} + \frac{1}{r}\frac{\partial u_{1}}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2}u_{1}}{\partial \theta^{2}} + \omega^{2}\frac{q_{\rho}}{A_{\rho}}u_{1} = 0$$

$$\Leftrightarrow R''\Theta + \frac{1}{r}R'\Theta + \frac{1}{r^{2}}R\Theta'' + \omega^{2}\frac{q_{\rho}}{A_{\rho}}R\Theta = 0$$

$$\Leftrightarrow r^{2}\frac{R''}{R} + r\frac{R'}{R} + \frac{\Theta''}{\Theta} + \omega^{2}\frac{q_{\rho}}{A_{\rho}}r^{2} = 0$$

Let $u_1(r,\theta) = R(r)\Theta(\theta)$. Then we have

$$\nabla^{2}u_{1} + \omega^{2} \frac{q_{\rho}}{A_{\rho}} u_{1} = 0$$

$$\Leftrightarrow \frac{\partial^{2}u_{1}}{\partial r^{2}} + \frac{1}{r} \frac{\partial u_{1}}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2}u_{1}}{\partial \theta^{2}} + \omega^{2} \frac{q_{\rho}}{A_{\rho}} u_{1} = 0$$

$$\Leftrightarrow R''\Theta + \frac{1}{r} R'\Theta + \frac{1}{r^{2}} R\Theta'' + \omega^{2} \frac{q_{\rho}}{A_{\rho}} R\Theta = 0$$

$$\Leftrightarrow r^{2} \frac{R''}{R} + r \frac{R'}{R} + \frac{\Theta''}{\Theta} + \omega^{2} \frac{q_{\rho}}{A_{\rho}} r^{2} = 0$$

$$\Leftrightarrow r^{2} \frac{R''}{R} + r \frac{R'}{R} + \omega^{2} \frac{q_{\rho}}{A_{\rho}} r^{2} = -\frac{\Theta''}{\Theta} = K.$$

•
$$K < 0$$
 e.g. $K = -\mu^2$.

•
$$K < 0$$
 e.g. $K = -\mu^2$.
• $\Theta'' - \mu^2 \Theta = 0$.

•
$$K < 0$$
 e.g. $K = -\mu^2$.

$$\bullet \Theta'' - \mu^2 \Theta = 0.$$

$$\Theta(\theta) = Ae^{\mu\theta} + Be^{-\mu\theta}.$$

- K < 0 e.g. $K = -\mu^2$.
 - $\bullet \Theta'' \mu^2 \Theta = 0.$
 - $\Theta(\theta) = Ae^{\mu\theta} + Be^{-\mu\theta}.$
 - NOT 2π -periodic

•
$$K < 0$$
 e.g. $K = -\mu^2$.

$$\bullet \Theta'' - \mu^2 \Theta = 0.$$

$$\Theta(\theta) = Ae^{\mu\theta} + Be^{-\mu\theta}.$$

• NOT
$$2\pi$$
-periodic

•
$$K = 0$$
.

•
$$K < 0$$
 e.g. $K = -\mu^2$.

$$\bullet \Theta'' - \mu^2 \Theta = 0.$$

•
$$\Theta(\theta) = Ae^{\mu\theta} + Be^{-\mu\theta}$$
.

• NOT
$$2\pi$$
-periodic

- K = 0.
 - $\Theta'' = 0$.

•
$$K < 0$$
 e.g. $K = -\mu^2$.

$$\bullet \Theta'' - \mu^2 \Theta = 0.$$

•
$$\Theta(\theta) = Ae^{\mu\theta} + Be^{-\mu\theta}$$
.

• NOT
$$2\pi$$
-periodic

•
$$K = 0$$
.

•
$$\Theta'' = 0$$
.

•
$$\Theta(\theta) = C + D\theta$$
.

•
$$K < 0$$
 e.g. $K = -\mu^2$.

$$\bullet \Theta'' - \mu^2 \Theta = 0.$$

•
$$\Theta(\theta) = Ae^{\mu\theta} + Be^{-\mu\theta}$$
.

• NOT
$$2\pi$$
-periodic

- K = 0.
 - $\Theta'' = 0$.
 - $\bullet \ \Theta(\theta) = C + D\theta.$
 - 2π -periodic iff D=0

•
$$K < 0$$
 e.g. $K = -\mu^2$.

$$\bullet \Theta'' - \mu^2 \Theta = 0.$$

•
$$\Theta(\theta) = Ae^{\mu\theta} + Be^{-\mu\theta}$$
.

• NOT
$$2\pi$$
-periodic

- K = 0.
 - $\Theta'' = 0$.
 - $\Theta(\theta) = C + D\theta.$
 - 2π -periodic iff D=0
- K > 0 e.g. $K = \mu^2$.

3 Cases

•
$$K < 0$$
 e.g. $K = -\mu^2$.

$$\bullet \Theta'' - \mu^2 \Theta = 0.$$

•
$$\Theta(\theta) = Ae^{\mu\theta} + Be^{-\mu\theta}$$
.

• NOT
$$2\pi$$
-periodic

•
$$K = 0$$
.

•
$$\Theta'' = 0$$
.

•
$$\Theta(\theta) = C + D\theta$$
.

•
$$2\pi$$
-periodic iff $D=0$

•
$$K > 0$$
 e.g. $K = \mu^2$.

$$\bullet \Theta'' + \mu^2 \Theta = 0.$$

3 Cases

•
$$K < 0$$
 e.g. $K = -\mu^2$.

$$\bullet \Theta'' - \mu^2 \Theta = 0.$$

•
$$\Theta(\theta) = Ae^{\mu\theta} + Be^{-\mu\theta}$$
.

• NOT
$$2\pi$$
-periodic

•
$$K = 0$$
.

•
$$\Theta'' = 0$$
.

$$\Theta(\theta) = C + D\theta.$$

•
$$2\pi$$
-periodic iff $D=0$

•
$$K > 0$$
 e.g. $K = \mu^2$.

$$\Theta'' + \mu^2 \Theta = 0.$$

•
$$\Theta(\theta) = Ee^{i\mu\theta} + Fe^{-i\mu\theta}$$
.

3 Cases

•
$$K < 0$$
 e.g. $K = -\mu^2$.

$$\bullet \Theta'' - \mu^2 \Theta = 0.$$

•
$$\Theta(\theta) = Ae^{\mu\theta} + Be^{-\mu\theta}$$
.

• NOT
$$2\pi$$
-periodic

•
$$K = 0$$
.

•
$$\Theta'' = 0$$
.

$$\bullet \ \Theta(\theta) = C + D\theta.$$

•
$$2\pi$$
-periodic iff $D=0$

•
$$K > 0$$
 e.g. $K = \mu^2$.

$$\Theta'' + \mu^2 \Theta = 0.$$

•
$$\Theta(\theta) = Ee^{i\mu\theta} + Fe^{-i\mu\theta}$$
.

• 2π -periodic iff $\mu = k$, where k is a non-negative integer

Bessel's Equation

The equation for R becomes

$$r^2 R_k'' + r R_k' + \left(\omega^2 \frac{q_\rho}{A_\rho} r^2 - k^2\right) R = 0.$$

(The boundary conditions will be dealt with momentarily). The solution to Bessel's Equation of order k is

$$R_k(r) = P_k J_k \left(\omega \sqrt{rac{q_
ho}{A_
ho}} r
ight) + Q_k H_k^{(1)} \left(\omega \sqrt{rac{q_
ho}{A_
ho}} r
ight)$$

Superposition

Thus

$$u_{1,k}(r,\theta) = R_k(r)\Theta_k(\theta)$$

$$= \left[P_k J_k \left(\omega \sqrt{\frac{q_\rho}{A_\rho}} r \right) + Q_k H_k^{(1)} \left(\omega \sqrt{\frac{q_\rho}{A_\rho}} r \right) \right] \left(E e^{ik\theta} + F e^{-ik\theta} \right).$$

Superposition

Thus

$$u_{1,k}(r,\theta) = R_k(r)\Theta_k(\theta)$$

$$= \left[P_k J_k \left(\omega \sqrt{\frac{q_\rho}{A_\rho}} r \right) + Q_k H_k^{(1)} \left(\omega \sqrt{\frac{q_\rho}{A_\rho}} r \right) \right] \left(E e^{ik\theta} + F e^{-ik\theta} \right).$$

Superposing these solutions gives

$$u_{1}(r,\theta) = \sum_{k=0}^{\infty} \left[a_{k} J_{k} \left(\omega \sqrt{\frac{q_{\rho}}{A_{\rho}}} r \right) + b_{k} H_{k}^{(1)} \left(\omega \sqrt{\frac{q_{\rho}}{A_{\rho}}} r \right) \right] \left(e^{ik\theta} + e^{-ik\theta} \right)$$
$$= \sum_{k=-\infty}^{\infty} \left[a_{k} J_{k} \left(\omega \sqrt{\frac{q_{\rho}}{A_{\rho}}} r \right) + b_{k} H_{k}^{(1)} \left(\omega \sqrt{\frac{q_{\rho}}{A_{\rho}}} r \right) \right] e^{ik\theta}.$$

Solution

$$\begin{cases}
(a) u_1(r,\theta) = \sum_{k=-\infty}^{\infty} a_k J_k \left(\sqrt{\frac{q_{\rho}}{A_{\rho}}} \omega r \right) e^{ik\theta} & \text{in } B_{\rho} \\
(b) u_2(r,\theta) = \sum_{k=-\infty}^{\infty} \left[c_k J_k (\omega z_b r) + d_k H_k^{(1)} (\omega z_b r) \right] e^{ik\theta} & \text{in } B_{2\rho} \setminus B_{\rho} \\
(c) u_3(r,\theta) = \sum_{k=-\infty}^{\infty} \left[e_k J_k (\omega z_e r) + f_k H_k^{(1)} (\omega z_e r) \right] e^{ik\theta} & \text{in } B_2 \setminus B_{2\rho}
\end{cases}$$

Error

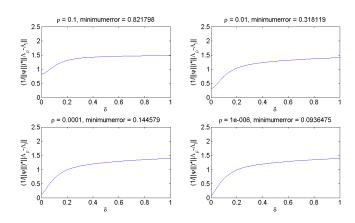
The error we measured was the following normalized error:

$$\frac{\left(\int_{\partial B_2} |u_3 - u_0|^2\right)^{\frac{1}{2}}}{\left(\int_{\partial B_2} |\psi|^2\right)^{\frac{1}{2}}}$$

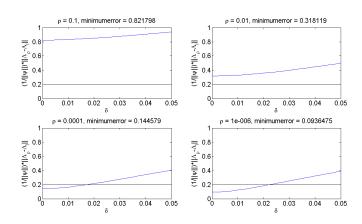
or, equivalently,

$$\frac{\left[\int_{\theta=0}^{2\pi} |u_{3}(2,\theta) - u_{0}(2,\theta)|^{2} d\theta\right]^{\frac{1}{2}}}{\left[\int_{\theta=0}^{2\pi} |\psi(2,\theta)|^{2} d\theta\right]^{\frac{1}{2}}}$$

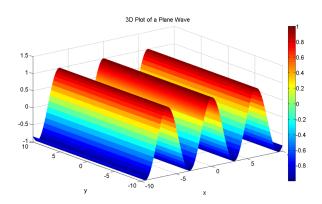
Dependence on ho and δ



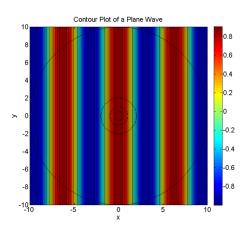
Dependence on ho and δ



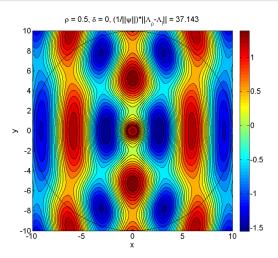
Electromagnetic Wave



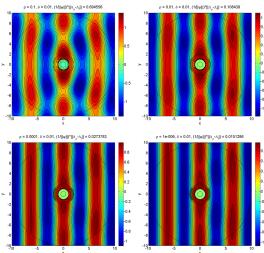
Contour Plot of Electromagnetic Wave



Shadow

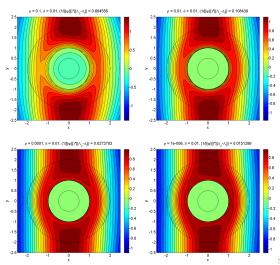


Cloaking



Andy Thaler

Zoom-in



$$R''(r) + \frac{1}{r}R'(r) + R(r) = 0$$

We assume a series solution of the form

$$R(r) = \sum_{n=0}^{\infty} c_n r^n$$

Assuming we can differentiate term-by-term, we have

$$R'(r) = \sum_{n=1}^{\infty} nc_n r^{n-1}$$

$$R''(r) = \sum_{n=1}^{\infty} n(n-1)c_n r^{n-2}$$

Inserting the series into Bessel's equation gives

$$\sum_{n=2}^{\infty} n(n-1)c_n r^{n-2} + \frac{1}{r} \sum_{n=1}^{\infty} nc_n r^{n-1} + \sum_{n=0}^{\infty} c_n r^n = 0$$

$$\sum_{n=2}^{\infty} n(n-1)c_n r^{n-2} + \sum_{n=1}^{\infty} nc_n r^{n-2} + \sum_{n=0}^{\infty} c_n r^n = 0$$

$$\sum_{n=2}^{\infty} n(n-1)c_n r^{n-2} + c_1 r^{-1} + \sum_{n=2}^{\infty} nc_n r^{n-2} + \sum_{n=2}^{\infty} c_{n-2} r^{n-2} = 0$$

$$\frac{c_1}{r} + \sum_{n=2}^{\infty} \left(n^2 c_n + c_{n-2} \right) r^{n-2} = 0$$

This implies that

$$c_1 = 0$$

$$c_n = -\frac{c_{n-2}}{n^2}$$

Using induction, we find that the solution to the above recurrence relation is

$$c_n = \begin{cases} 0 \text{ for } n \text{ odd} \\ \frac{(-1)^k c_0}{2^{2k} (k!)^2} \text{ for } n \text{ even, where } k = \frac{n}{2} \end{cases}$$

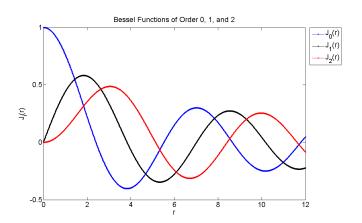
Thus our solution is

$$R(r) = \sum_{k=0}^{\infty} \frac{(-1)^k c_0}{2^{2k} (k!)^2} r^{2k}$$
$$= c_0 + \sum_{k=0}^{\infty} \frac{(-1)^k c_0}{2^{2k} (k!)^2} r^{2k}$$

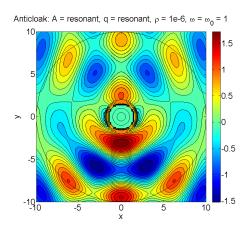
The ratio test shows that the above series converges for all r. We thus define

$$J_0(r) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{2k} (k!)^2} r^{2k}$$

Bessel's Equation of Orders 0, 1, 2, and 10



Clown



Introduction Cloaking for Helmholtz Introduction to Dissipation Solution Results

Thank you!!!

Also, thank you to Professor Daniel Onofrei.