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SYMMETRIC MATRICES.

8.1

In this: chapter we will work. w1th real numbers throughout except for i
digression into C i in the discussion of Fact 8.1.3. : L

Our work in the last chapter dealt with the following central question:

When is a given square matrix A diagonalizable? That is, when is there an
eigenbasis for A7

In geometry, we prefer to work with orthonormal bases, which raises the folic
ing question:

For which’ matrices is there an orthonormal eigenbasis?: Or, equwalentl
which matrices A is there an orrhogonal matrix S such that S“lAS =5TA
diagomal? 7 R : e

(Recall that $=1 = §7 for orthogonal matrices, by Fact 5.3.7.) We say thy
is orthogonally dzagonahzabie if there exists an orthogonal § such that S~ LAY
5T AS is diagonal. Then, the question is

- Which matrices are orthogonally diagonalizable?.

Simple examples of orthogonally diagonalizable matrices are diagonal maii
{we can let § == 1,) and the matrices of orthogonal projections and reflections

N IHBRRE If A is orthogonally diagonalizable, what is the relationship between AT and

Solution

We have

S'AS=D or A=SDS'=58DS",
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for an orthogonal S and a diagonal D. Then

AT = (sDSTY = SDTST = $DS" = A.

We find that A is symmetric:
AT = A,

Surprisingly, the converse is true as well:

Spectral theorem

A matrix A is orthogonally diagonalizable (i.e., there exists an orthogonal § suck
that S—1AS = ST AS is diagonal) if and only if A is symmetric (€., AT = A)

We will prove this theorem later in this section, based on two preliminary resul
Facts 8.1.2 and 8.1.3. First, we will illustrate the spectral theoremn with an examp

For the symmetric matrix A = [i ﬂ find an orthogonal § such that §~tAS
diégona}.'
Solution

We will first find an eigenbasis. The eigenvalues of A are 3 and 8, with correspor

ing eigenvectors [_ﬁ%} and [;_J, respectively. (See Figure 1.)

Eg=span E_}

™~

-

~_

Eg:SpanLZX

Figure 1

Note that the two eigenspaces, E3 and Eg, are perpendicular. (This is no
incidence, as we will see in Fact 8.1.2.) Therefore, we can find an orthonor
gigenbasis simply by dividing the given eigenvectors by their lengths:

5 1 [ 27 - i [1]
= = s Uy =2 e .
AL N
If we define the orthogonal matrix

P a2
S = UE; U!g :_ﬁ[-l 2],

then S~ AS will be diagonal, namely, S™'AS = {3 g]
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Fact 8.1.2

Proof We compute the product

The key observation we made in Example 2 generalizes as follows:

Consider a symmetric matrix A. If #; and ¥, are eigenvectors of A with distinct |
eigenvalues Ay and A, then T -y = 0; that is, vz is orthogonal to 1. -

o] ATy
in two different ways:
3T Ay = B (Ratha) = Aa(D) - ¥2)
0T AT, =07 AT0y = (AB) D2 = (AT V2 = (@1 - B2)
Comparing the results, we find
2 (@) - B2) = ha(Ty - Ta),

or
(A = A2)(Ty - Up) = 0.

Since the first factor in this product, A; — Az, is nonzero, the second factor, Uy - ¥y
must be zero, as claimed.

Fact 8.1.2 tells us that the eigenspaces of a symmetric matrix are perpendiculd
to one another. Here is another illustration of this property:

For the symmetric matrix

11
A=|1 1 171,
11

find an orthogonal S such that ™' AS is diagonal.

Solution

The eigenvalues are 0 and 3, with

-1 -1 1
Eo = span 179, 0 and FEy=spani |
0 1 1

Note that the two eigenspaces are indeed perpendicular to one another, in accus
dance with Fact 8.1.2. (See Figure 2.) '

We can construct an orthonormal eigenbasis for A by picking an orthonornl
basis of each eigenspace (using the Gram—Schmidt process in the case of Kq). >
Figure 3.

In Figure 3, the vectors U;, vy form an orthonormal basis of Fp, and v is
unit vector in £3. Then &, U2, Us is an orthonormal eigenbasis for A. We can
S=[t © 3] todiagonalize A orthogonally. -

1If we apply the Gram-Schmidt! process to the vectors

—1 -1
17, 0
0 1

' Alsernatively, we couid find a unit vector D, irs Eq and a unit vector Uy in £, and then et Uy = 1y
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1
E,=span| 1
1

1 (wfi 3

Ey = span 1,10
0 Lz

Figure 2 The sigenspaces £, and E; are orthogonal Figure 3
compiemer]ts.

Fact 8.1.3

Proof

spanning Ep, we find

I I
U = — i and = —| —1

The computations are left as an exercise. For E3, we get

1 ;
Uy = —=
V3 1

Therefore, the orthogonal matrix

| ~1/v2 =1/6 1/4/3
S=|8 & =] 1/¥2 -1/¥6 1/V3
P 0 2/v6 1743

diagonalizes the matrix A:

S7IAS =

R R o]

6 0
0 0. [ |
0 3
By Fact 8.1.2, if a symmetric matrix is diagonalizable, then it is orthogonally

diagonalizable. We still have to show that symmetric matrices are diagonalizable in
the first place (over R). The key point is the following observation:

A symmetric # x r matrix A has » real eigenvalues if they are counted with their
algebraic multiplicities.

(This proof is for those who have studied Section 7.5.) By Fact 7.54, we need
to show that all the complex eigenvalues of matrix A are in fact real. Consider two
complex conjugate eigenvalues p-ig of A with corresponding eigenvectors viw.
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Proof
{of Fact 8.1.1):

(Compare this with Exercise 7.5.42b.) We wish to show that these eigenvalues are
real; that is, ¢ = 0. Note first that

@+ i) (@ —iw) = |32 + )2
(Verify this.) Now we compute the product
(0 + i) AT — i)
in two different ways:
T+ AG —id) = 0+ i) (p —ig)(F - i)
= (p ~ i) (1B + @4
(@ +19) AW — i) = (A@ +18)) (= iD) = (p + ig)® + i5)(F — i)
= (p +ig)([o)* + Ja .
Comparing the results, we find that p + ig = p — iq, sothat g = Q, as claimed. W

The foregoing proof is not very enlightening. A more transparent proof would
follow if we were to define the dot product for complex vectors, but to do so would -
lead us too far afield.

We are now ready to prove Fact 8.1.1: Symmetric matrices are orthogonally -
diagonalizable. .

Even though this is not logically necessary, let us first examine the case of a
Symmetric 1 X n matrix A with n distinct real eigenvalues. For each eigenvalue, we
can choose an eigenvector of length 1. By Fact 8.1.2, these eigenvectors will form *
an orthonormal eigenbasis, that is, the matrix A will be orthogonally diagonalizable,
as claimed.

This proof is somewhat technical; it may be skipped in a first reading of this text
without harm. '

We prove by induction on n that a symmetric n x » matrix A is orthogonally -
diagonalizable. (See Fact 6.1.7.)

Foral x I matrix A, we can let § = [11.

Now assume that the claim is true for n — 1; we show that it holds for n. Pick
a real eigenvalue A of A (this is possible by Fact 8.1.3), and choose an eigenvector
vy of length 1 for A. We can find an orthonormal basis U, U2, ..., U, of R". (Think
about how you could construct such a basis.) Form the orthogonal matrix

[ |
P = Vo vy e Uy 1,

P E

and compute
PlAP.

The first column of P~'AP is 42,. (Why?) Also note that P~'AP = PTAP iy
symmetric: (PTAP)" = PTATP = PTAP, because A is symmetric. Cormbining
these two statements, we conclude that P~' A P is of the form
A0 .
1 . 5
P AP—[G B]’ (_I.i_
where B is a symmetric (n — 1) x (n— 1) matrix. By induction hypothesis, we assue :

that B is orthogonally diagonalizable; that is, there is an orthogonal (1 1) % (n—1|
matrix ( such that

Q'BO=D
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Fact 8.1.4

EXAMPLE 4
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is a diagonal (n — 1) x (7 — 1) matrix. Now introduce the orthogonal n x n matrix
P 0
R_[O Q].
abA 0 e Ota Of(1 0O} [ O
R[OBR—OQ”OBOQ“OD (I

is diagonal.
Combining equations (I} and (I1), we find that

Then

~1p-1 _|* 0
R7'P APR-—[O D iy

is diagonal. Consider the orthogonal matrix S = P R. (Recall Fact 5.3 .4a: The prod-
uct of orthogonal matrices is orthogonal.) Note that $7' = (PR)y"' = R~TP~Y,
Therefore, equation (IIT) can be written

A G
“]AZ
sas=[3 9]

proving our claim. - |
The methad outlined in the proof of Fact 8.1.1 is not a sensible way to find the
matrix S in a numerical example. Rather, we can proceed as in Example 3:

Orthogonal diagonalization of a symmetric matrix A

a. Find the eigenvalues of A, and find a basis of each eigenspace.

b. Using the Gram-Schmidt process, find an orthonormal basis of each
eigenspace.

¢. Form an orthonormal eigenbasis v, v2,..., U, for A by concatenating the
orthonormal bases you found in part (b), and let

It I

S= 5] [ 2 R E”

. i
S is orthogonal (by Fact 8.1.2), and S~'AS will be diagonal.

We conclude this section with an example of a geometric nature:

Consider an invertible symmetric 22 matrix A. Show that the linear transformation
T'(x) = Ax maps the unit circle into an ellipse, and find the lengths of the semimajor
and the semiminor axes of this ellipse in terms of the eigenvalues of A. Compare
this with Exercise 2.2.50.

Solution

The spectral theorem tells us that there is an orthonormal eigenbasis vy, v; for T,
with associated real eigenvalues A; and A2. Suppose that [A;] = |A2|. These eigen-
values will be nonzero, since A is invertible. The unit circle in R? consists of all
vectors of the form

v = cos{)t| + sin(t)Va.
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The image of the unit circle consists of the vectors

- - . - a.
T(V) = cos()T (¥)) + sin(t)T{v,)
= COS()A Dy + sin(t) Ay 1,
an ellipse whose semimajor axis A;7; has the length |3, ¥1 ] = [A,], while the length
of the semiminor axis is | A2Ta )| = jxa]. (See Figure 4.) : ¢
15, If A
orthe
6. a Fi
Unit wi
circle .
pli
Hi
Figure 4 b, Fir
In the example illustrated in Figure 4, the eigenvalue A; is positive, and X, is’
negative, LB
EXERCISES 8.1 Wi
c. Use
GOAL  Find orthonormal eigenbases for symmetric matrices. ' 11-0 1 .
. 7 Use th
Apply the spectral theorem. o A=70 1°0 of the ¢
For each of the matrices in Exercises | through 6, find an or- F o : elsewh
thenormal eigenbasis. Do not use technology. I2. Tet L from B to B be the reflection about the b
_ ) spanned by :
1 0 11 1
Lo ZJ =14 E} P= |0
o fo 0 2
3 ) 3] 4. [0 0 a. Find an orthenormal eigenbasis 8 for L. 18, Conside
~ 111 b. Find the matrix B of £, with respect to B, _ betweer
001 1 o 2 9 <. Find the matrix A of L with respect to the standard of the n
2 C _ [z
5.1 0 1 6. |2 1 o0 basis of " = -f:de{"
i1 o 20 —1 13. Consider a symmetric 3 x 3 matrix A with A = I Is s deter
. - the finear transformation 7'(Y) = AX necessarily the re- 1. Conside
For each of the matrices A in Exercises 7 through 11, find fection about a subspace of R?? {hat the;
an orthogonal matrix § and a diagonal marric D such thar 14. In Exampie 3 of this section, we diagonalized the matrix : SHC? ﬂ-;?
S~'AS = D. Do not use techrniology. onal.
1 11 Hint: C
3 9 3 3 A=11 1 1 forthe s
A= BoA=13 5 L1 20. Conside:
L m <
0 0 3 1 -2 2 by means of an orthogonal matrix §. Use this resuit to di= Bi,oo., i
9. A=(0 2 ¢ 0. A=| -2 4 -4 agonalize the following matrices orthogonally (find § and: of B" s
30 0 2 4 4 D in each case):

r=1,..



