Math 4530

Solutions to hw due January 28
Chapter 1: 6.2-6.6, 6.9 (kappa3,kappa4), 6.10 (kappa3d1, tau3d1).
Chapter 2: 1.6-1.7, 5.1-5.5
I have decided to break the solutions into two files. This file contains the chapter 1 portion. the file hwsolsjan 28 b .mws will contain solutions to the chapter 2 problems.
6.2: I have loaded the procedures from the posted file curtor.mws. These compute curvature and torsion.

```
> hel:=[a*cos(t), a*sin(t),b*t]:
    hell:=subs ( \(\{a=4, b=2\}\), hel) :
    curv(hel1);
    tor (hell);
```

$$
\begin{aligned}
\kappa & =\frac{1}{5} \\
\tau & =\frac{1}{10}
\end{aligned}
$$

6.3:

```
> with(plots):
Warning, the name changecoords has been redefined
> spacecurve(hel1,t=0..10*Pi,scaling=unconstrained,
    thickness=1, color=blue, axes=boxed, numpoints=100);
    #I increased numpoints to get a smoother picture
```


6.4, $6.5,6.6$ have a lot of work that is easier to do by hand, and I intend to minimize my work. 6.4) Using the formula for involute (exercise 2.4 page 17), and noting that for $u s, s(t)=\operatorname{sqrt}(2)^{*} t$, one deduces that the involute of the given helix is a curve in the $x-y$ plane, with formula

$$
\left[\begin{array}{r}
>\operatorname{Invo}:=\left[\cos (t)+t^{*} \sin (t),\right. \\
\operatorname{sinvo}:=[\cos (t)+t \sin (t), \sin (t)-t \cos (t)]
\end{array}\right.
$$

We recognize that this is actually the involute of a unit circle as well. Here's a picture:
$>\operatorname{plot}([\cos (t)+t * \sin (t), \sin (t)-t * \cos (t), t=0 . .2 * P i])$;

6.5-6.6) See hand-worked notes, for the formula derivations. Here's a picture of the evolute:
$>$ plot ([t-cosh(t)*sinh(t), 2* $\cosh (t), t=-1 . .1])$;

6.9: I have loaded the procedures from the posted document planecurve.mws. I adjust the parameter ranges to make nice pictures:
> kap3:=t->exp(t):
kap4:=t->sin(t):
> recreate (kap3,-3,3,-3,1,-1,3);

6.10: I have loaded the procedures from the posted file frenet.mws:
> kap3d1:=t->t:

```
tau3d1:=t->t/10:
recreate3dview(kap3d1,tau3d1,0,10,0,2,0,2,0,1);
```


[>

