Delaunay Surface profile curves
Math 4530
March 28, 2001
We solve the differential equations for a surface of revolution having mean curvature $=1 / 2$. Solutions for the profile curve which start out being parameterized by arclength continue to be so.
>
$>$
> with (DEtools):
Warning, the name adjoint has been redefined
$>\operatorname{deqt}:=\left\{\operatorname{diff}(x(t), t, t)-\operatorname{diff}(z(t), t)^{\wedge} 2 / x(t)=-\operatorname{diff}(z(t), t)\right.$, $\operatorname{diff}(z(t), t, t)+\operatorname{diff}(z(t), t) * \operatorname{diff}(x(t), t) / x(t)=$
$\operatorname{diff}(x(t), t)\} ;$

$$
\text { deqtn }:=\left\{\left(\frac{\partial^{2}}{\partial t^{2}} z(t)\right)+\frac{\left(\frac{\partial}{\partial t} z(t)\right)\left(\frac{\partial}{\partial t} x(t)\right)}{x(t)}=\frac{\partial}{\partial t} x(t),\left(\frac{\partial^{2}}{\partial t^{2}} x(t)\right)-\frac{\left(\frac{\partial}{\partial t} z(t)\right)^{2}}{x(t)}=-\left(\frac{\partial}{\partial t} z(t)\right)\right\}
$$

> ICS1: $=[[x(0)=1, z(0)=0, D(x)(0)=0, D(z)(0)=1]$,
$[x(0)=1.2, z(0)=0, D(x)(0)=0, D(z)(0)=1]$,
$[x(0)=1.4, z(0)=0, D(x)(0)=0, D(z)(0)=1]$,
$[x(0)=1.6, z(0)=0, D(x)(0)=0, D(z)(0)=1]$,
$[x(0)=1.8, z(0)=0, D(x)(0)=0, D(z)(0)=1]$,
$[x(0)=1.9, z(0)=0, D(x)(0)=0, D(z)(0)=1]]:$
DEplot (deqtn, $[x(t), z(t)], t=-20 . .20, I C S 1, x=-3 . .3, z=-2 * P i \ldots 2 * P i$, linecolor=black, scene=[z(t),x(t)],stepsize=.05);
\#embedded Delaunay surfaces

$>\operatorname{ICS} 2:=[[x(0)=2.1, z(0)=0, D(x)(0)=0, D(z)(0)=1]$,
$[x(0)=2.2, z(0)=0, D(x)(0)=0, D(z)(0)=1]$,
$[x(0)=2.3, z(0)=0, D(x)(0)=0, D(z)(0)=1]$,
$[x(0)=2.4, z(0)=0, D(x)(0)=0, D(z)(0)=1]$,
$[x(0)=2.5, z(0)=0, D(x)(0)=0, D(z)(0)=1]]:$
$>$ DEplot (deqtn, $[x(t), z(t)], t=-20.20, I C S 2, x=-3 . .3, z=-2 * P i . .2 * P i$, linecolor=black, scene=[z(t),x(t)],stepsize=.05); \#immersed Delaunay surface profiles

