Math 4200

Wednesday October 30
3.2-3.3 isolated zeroes theorem, uniqueness of analytic extensions; begin 3.3 Laurent series.

Announcements:

Consequences of power series for analytic functions:

Theorem (Isolated zeroes theorem). Let

 $A \subseteq \mathbb{C}$ be an open, connected set, $f: A \to \mathbb{C}$ analytic, $D(z_0; r) \subseteq A$, $f(z_0) = 0$.

Then either $f(z) \equiv 0$ in $D(z_0; r)$ or $\exists \delta > 0$ such that $f(z) \neq 0 \ \forall 0 < |z - z_0| < \delta$. proof: f has convergent Taylor series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 $|z - z_0| < r$.

If all the $a_n = 0$ then $f \equiv 0$ in $D(z_0; r)$. Otherwise let a_N be the first non-zero coefficient in the power series, so

$$f(z) = \sum_{n=N}^{\infty} a_n (z - z_0)^n$$

and factor out the lowest power of $\left(z-z_{0}\right)$ that appears in this series:

$$f(z) = (z - z_0)^N \left(a_N + \sum_{n=N+1}^{\infty} a_n (z - z_0)^{n-N} \right)$$
$$f(z) = (z - z_0)^N g(z)$$

where $g(z_0) = a_N \neq 0$ and g(z) is analytic and hence continous near z_0 . Thus there exists $\delta > 0$ such that $|z - z_0| < \delta \Rightarrow g(z) \neq 0$. This proves the claim.

QED.

There is a surprising consequence of the isolated zeroes theorem:

<u>Corollary</u> (Unique extensions theorem) Let $A \subseteq \mathbb{C}$ be open and connected; $f, g : A \to \mathbb{C}$ analytic. Supposed there exists

$$A \subseteq \mathbb{C} \text{ be open and connected,}$$

$$f,g:A \to \mathbb{C} \text{ analytic;}$$

$$\left\{z_k\right\} \subseteq A, \, \left\{z_k\right\} \to z_0 \in A, \, z_k \neq z_0, \, k \in \mathbb{N}.$$

$$f\left(z_k\right) = g\left(z_k\right) \, \, \forall \, \, k$$

Then $f(z) = g(z) \ \forall \ z \in A$.

proof: $f - g : A \to \mathbb{C}$ is analytic and $(f - g)(z_k) = 0 \ \forall k$. Thus z_0 is a zero of f - g which is not isolated. Thus by the isolated zeroes theorem,

$$(f-g)(z) \equiv 0, \forall z \in D(z_0; r) \subseteq A.$$

(This is already surprising.) Now, consider

$$B := \{ z \in A \mid (f - g)^{(n)}(z) = 0 \ \forall \ n = 0, 1, 2, \dots \}.$$
 We have $D(z_0; r) \subseteq B$ since $(f - g)(z) \equiv 0$ in $D(z_0; r)$.

• B is closed in A because if $\{w_k\} \subseteq B$, $\{w_k\} \rightarrow w \in A$ then

$$0 = (f - g)^{(n)}(w_k) \to (f - g)^{(n)}(w) \ \forall \ n.$$

• B is open in A because if $z_1 \in B$ the Taylor series for f at z_1 is the zero function, so for any $D(z_1; r) \subseteq A$ we also have $D(z_1; r) \subseteq B$.

Thus, since A is connected, B = A.

<u>Example</u> (also see one of your homework problems). It is not clear without a lot of work why the Riemann Zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^{s}}$$

can be extended as an analytic function (with different formulas), beyond the plane Re(s) > 1 on which the series converges. But in fact, it can be extended as an analytic function on $\mathbb{C} \setminus \{1\}$. The Unique extensions theorem says there's only one possible extension.

3.3 <u>Laurent series.</u> If f(z) is an analytic function on a punctured disk or on an annulus centered at z_0 , then f can be expressed as a power series expansion using non-negative *and* negative powers of $(z-z_0)$, and this series converges in the open annulus and uniformly absolutely in all closed sub-annuli. These expansions are called *Laurent series*.

<u>Laurent Series Theorem</u> For $0 \le R_1 < R_2$ let

$$A = \{ z \in \mathbb{C} \mid R_1 < |z - z_0| < R_2 \}$$

be an open annulus (or punctured disk in case $R_1 = 0$). Then (1) and (2) below are equivalent, and the uniqueness of Laurent coefficients (3) also holds:

- (1) $f: A \to \mathbb{C}$ is analytic.
- (2) f(z) has a power series expansion using non-negative and negative powers of $(z z_0)$:

$$\begin{split} f(z) &= \sum_{n=0}^{\infty} a_n \big(z - z_0\big)^n + \sum_{m=1}^{\infty} \frac{b_m}{\big(z - z_0\big)^m} \,. \\ &:= S_1(z) + S_2(z) \,. \end{split}$$

Here $S_1(z)$ converges for $|z-z_0| < R_2$ and uniformly absolutely for $|z-z_0| \le r_2 < R_2$. And $S_2(z)$ converges for $|z-z_0| > R_1$, and uniformly for $|z-z_0| \ge r_1 > R_1$.

(3) The Laurent coefficients a_n , b_m are uniquely determined by f. Specifically, if γ is any p.w. C^1 contour in A, with $I(\gamma, z_0) = 1$, e.g. any circle of radius r, with $R_1 < r < R_2$, then

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\left(\zeta - z_0\right)^{n+1}} d\zeta$$

$$b_m = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left(\zeta - z_0\right)^{m-1} d\zeta.$$

In particular the contour integral of f itself has value

$$\int_{\gamma} f(\zeta) d\zeta = 2 \pi i b_1.$$

For this reason, the coefficient b_1 of $\frac{1}{z-z_0}$ in the Laurent series, is called the *residue* of f at z_0 .

(Because it's the only part of the Laurent series you need to know in order to compute the contour integral of f.)

Note: $(2) \Rightarrow (1)$ of the theorem is immediate, since uniform limits of analytic functions are analytic. We'll prove $(2) \Rightarrow (3)$ in today's notes, and then do $(1) \Rightarrow (2)$ on Friday.

Examples:

1) Consider

Find the following series expansions for
$$z_0 = 0$$
:
$$f(z) = \frac{1}{(z-1)(z+2)} = \frac{1}{3} \left(\frac{1}{z-1} - \frac{1}{z+2} \right).$$
Find the following series expansions for $z_0 = 0$:

- a) Taylor series for |z| < 1
- b) Laurent series for 1 < |z| < 2.
- c) Laurent series for |z| > 2.

Use residues from the Laurent series to compute $\int_{V} f(z) dz$ for the three index-one circles centered at the

origin, of radii $\frac{1}{2}$, $\frac{3}{2}$, 3. Notice that this is reproducing results you already know how to find using the Cauchy integral formula and other means.

2a) What is the Laurent series for
$$z e^{\frac{1}{z}}$$
 in $\mathbb{C} \setminus \{0\}$?
2b) What is the value of

$$\int_{\gamma} z e^{\frac{1}{z}} dz$$

if γ is a closed contour in $\mathbb{C} \setminus \{0\}$, with $I(\gamma; 0) = 1$?

 $proof \ of \ (2) \Rightarrow (3)$ in the Laurent series theorem:

(2) f(z) has a power series expansion using non-negative and negative powers of $(z-z_0)$:

$$\begin{split} f(z) &= \sum_{n=0}^{\infty} a_n \big(z - z_0 \big)^n + \sum_{m=1}^{\infty} \frac{b_m}{\big(z - z_0 \big)^m} \\ &:= S_1(z) + S_2(z). \end{split}$$

Here $S_1(z)$ converges for $|z-z_0| < R_2$ and uniformly absolutely for $|z-z_0| \le r_2 < R_2$. And $S_2(z)$ converges for $|z-z_0| > R_1$, and uniformly for $|z-z_0| \ge r_1 > R_1$.

(3) The Laurent coefficients a_n , b_m are uniquely determined by f. Specifically, if γ is any p.w. C^1 contour in A, with $I(\gamma, z_0) = 1$, e.g. any circle of radius r, with $R_1 < r < R_2$, then

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\left(\zeta - z_0\right)^{n+1}} d\zeta$$
$$b_m = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left(\zeta - z_0\right)^{m-1} d\zeta.$$

In particular the contour integral of f itself has value

$$\int_{\gamma} f(\zeta) d\zeta = 2 \pi i b_1.$$

proof: We'll write $f(\zeta) = S_1(\zeta) + S_2(\zeta)$ and just compute the contour integrals above. We'll use the uniform convergence of the series $S_1(\zeta)$, $S_2(\zeta)$ on γ to interchange the integrals with the summations:

Math 4200-001

Week 10 concepts and homework

3.2-3.3

Due Wednesday November 6 at start of class.

3.3 1ab, 4, 6, 8, 13, 15, 17, 18, 19, 20

w10.1 Let f be an entire function. Suppose $f\left(\frac{1}{n}\right) = \frac{1}{n^2}$ for all positive integers n. Is it possible for

f(-1) to equal -1? Explain.

w10.2) Use power series or L'Hopital's rule to find

$$\lim_{z \to 0} \frac{\cos(z) - 1}{z \sin(z)}$$

w10.3) Continuing the text problem 3.3.4, find the Laurent series for

$$\frac{1}{z(z-1)(z-2)}$$

valid for |z| > 2.

w10.4) Which of these functions has a removable singularity at z = 0?

- a) $\frac{\cos(z) 1}{z \sin(z)}$ (see w10.2)
- b) $\frac{\cos(z)-1}{z^3}.$