Sequences

 $\epsilon - \delta$ definitions:

$$\{z_k\} \to L \text{ iff}$$
(note: limits are unique.)
$$\{k \in \mathbb{N}\}$$

$$\{z_k\} \to L \text{ iff}$$

$$\{k \in \mathbb{N}\}$$

$$\{k \in \mathbb{N}\}$$

$$\{k \in \mathbb{N}\}$$

$$\{z_k\}$$
 is "Cauchy" iff $\forall \{z_n\} \ni \forall \{z_n\} \ni \forall \{z_n\} \ni \{z_n\} \mid \{z_n\} \ni \{z_n\} \mid \{z_n\}$

to be continued ...

<u>Theorem</u> The sequence $\{z_k\}$ is Cauchy iff $\{z_k\}$ converges to some limit L. in C. or R.

•
$$\{z_n\} \rightarrow L$$
. Then $\{z_n\}$ is Canchy. (It 2)0
 $\underbrace{crux} |z_m - z_n| = |(z_m - L) + (L - z_n)|$
 $\leq |z_n - L| + |z_n - L|$

So
$$\exists N \text{ s.t. } h \geqslant N \Rightarrow |z_h - L| < \frac{r}{2}$$

so if $m,n \geqslant N \Rightarrow |z_h - z_h| < \epsilon \Rightarrow \{z_h\} \text{ is Cauchy.}$

(i)
$$\{az_k\} \rightarrow aL$$

(ii)
$$\{z_k + w_k\} \rightarrow L + M$$

 $\underbrace{\operatorname{crux}}_{} \quad \left| z_k + w_k - (L + M) \right| = \left| [z_k - L) + (w_k - M) \right| \\ \leq \left| z_k - L \right| + \left| w_k - M \right|$

(iii)
$$\{z_k w_k\} \rightarrow LM$$

$$\underline{\operatorname{cru}} \times \left| \{z_k w_k\} - LM \right| = \left| \{z_k (w_k - L) + L(w_k - M) \right|$$

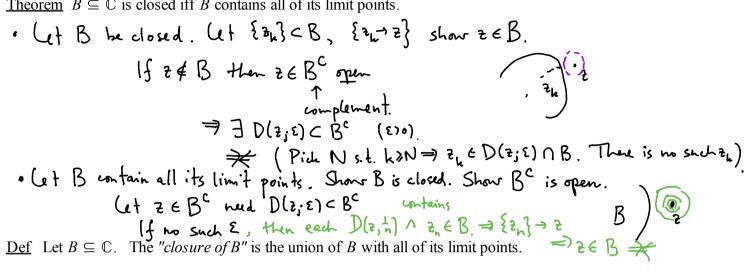
$$\leq |\{z_k w_k\} - LM | = |\{z_k (w_k - L) + L(w_k - M) \}|$$

(iv)
$$\left\{\frac{z_k}{w_k}\right\} \rightarrow \frac{L}{M}$$
 provided $w_k \neq 0 \ \forall \ k \text{ and } M \neq 0$.
Use (iii) $x \in \mathbb{R}$ special case $x \in \mathbb{R}$ $x \in \mathbb{R}$

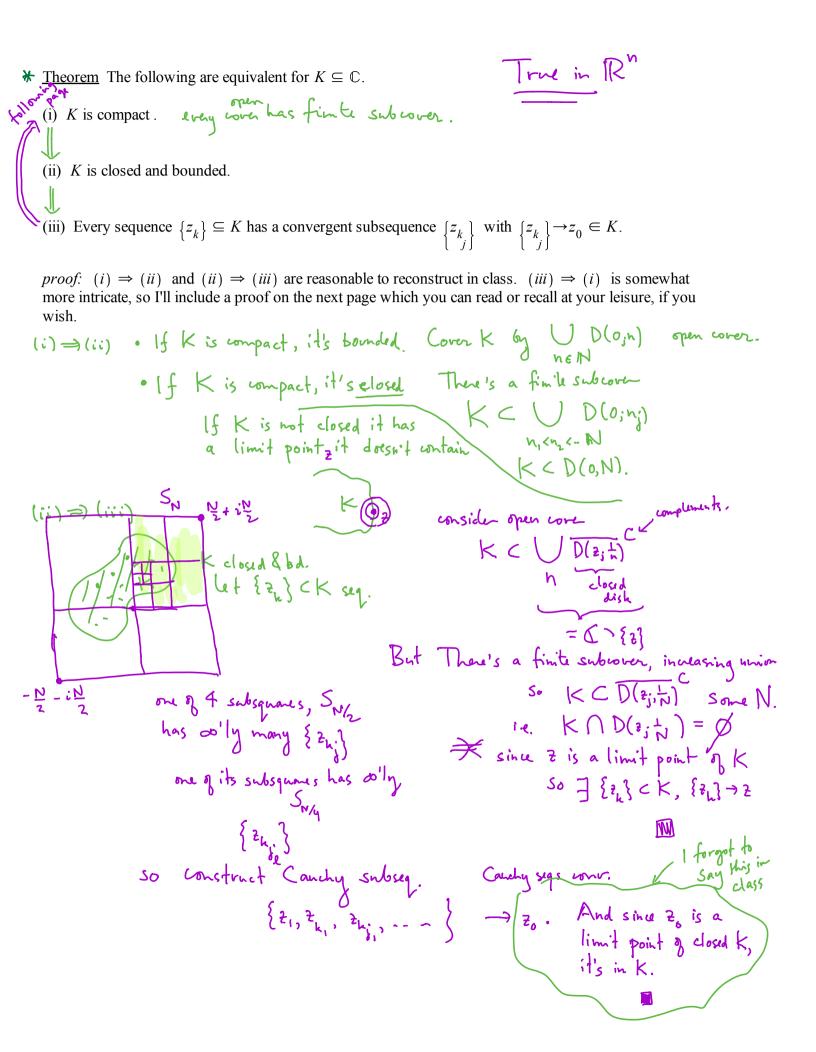
sequences and sets

 $\underline{\mathrm{Def}} \ \ \mathrm{Let} \ B \subseteq \mathbb{C}. \ \ z \in \mathbb{C} \ \ \mathrm{is \ a} \ \ "limit \ point" \ \mathrm{of} \ B \ \ \mathrm{iff} \ \ \exists \ \left\{z_k\right\} \subseteq B \ \ \mathrm{s.t.} \ z_k \to z.$

Theorem $B \subseteq \mathbb{C}$ is closed iff B contains all of its limit points.



Theorem Let $B \subseteq \mathbb{C}$. Then the closure of B is closed, and can also be characterized as the intersection of all closed sets containing B.



 $(iii)\Rightarrow (i)$. We assume $K\subseteq\mathbb{C}$ has the property that every sequence $\left\{z_k\right\}\subseteq K$ has a convergent subsequence $\left\{z_k\right\}$ with $\left\{z_k\right\}\to z_0\in K$. We wish to show that every open cover of K has a finite subcover. We will use the fact that the rational points $\{p+i\ q\ |\ p,q\in\mathbb{Q}\}$ are dense in \mathbb{C} , specifically the fact that \mathbb{C} is separable:

Let $\left\{U_{\alpha}\right\}_{\alpha \in A}$ be an open cover of K. For each $z \in U_{\alpha}$ pick $z_p, r_p \in \mathbb{Q}$ s.t $z \in \mathrm{D} \left(z_p, r_p\right) \subseteq U_{\alpha}$. Then the collection $\left\{\mathrm{D} \left(z_p, r_p\right)\right\}_{z \in U_{\alpha}, \alpha \in A}$ is a highly redundant countable cover of K. Re-label the non-redundant disks by the natural numbers,

$$\left\{ \mathbf{D}\left(z_{k}, r_{k}\right) \right\}_{k \in \mathbb{N}}.$$

If we can find a finite subcover of K using these disks, then since each disk $D(z_k, r_k)$ is in some U_{α_k} , the finite collection U_{α_k} will also be a finite subcover of K, and the theorem will be proven. We prove this fact by contradiction:

If no finite subcover exists, then for each $n \in \mathbb{N}$ pick

$$w_n \in K, w_n \notin \bigcup_{k=1}^n D(z_k, r_k)$$
.

By the assumption (iii) a subsequence $\left\{w_{n_j}^{}\right\} \to w_0 \in K$. But this $w_0 \in \mathrm{D}\left(z_k, r_k\right)$ for some fixed k since the collection of all these disks is a cover of K. Thus by convergence, there exists J s.t. $j \geq J \Rightarrow w_n \in \mathrm{D}\left(z_k, r_k\right)$. This violates how w_n was chosen, as soon as $n_j > k$. This contradiction proves that for some N, $K \subseteq \bigcup_{k=1}^N \mathrm{D}\left(z_k, r_k\right) \subseteq \bigcup_{k=1}^N U_{\alpha_k}$.

Math 4200-001

Friday August 30

Part 2 of section 1.4: Add functions to the mix of sets, sequences, in review of 3220 material we'll be using in 4200.

Announcements • hw 1 solutions are posted, but hw isn't graded yet -> will be returned on Wed.

• We'll continue our review of 3220 for 4200,

trying to not rush & also to highlight

key results. (Probably won't finish

all of "today's" notes today.) we didn't

even start

• Don't come to class on Monday.

Don't we did notes

Warm-up exercise