EXAM 1
 Math 4200-1 October 5, 2011

Answer problems (A) and (B) below, which are each worth 5 points. Then choose any 3 of the 6 multi-part problems which follow, each of which is worth a total 30 points. If you try more than 3 of these problems, indicate clearly which 3 you want graded.This exam is closed book and closed note. Show complete work for complete credit. Good Luck!

Mandatory problems:

A) Define what it means for a function $f(z)$ to be complex differentiable at a point $z_{0} \in \boldsymbol{C}$, and also write down the affine approximation formula (with error estimate) which is equivalent to this definition.
(5 points)
B) Let $\gamma:[a, b] \rightarrow \boldsymbol{C}$ be a C^{1} curve, and let $f: A \rightarrow \boldsymbol{C}$ be a continuous function from an open domain $A \subseteq C$ containing the image of γ. Define

$$
\begin{equation*}
\int_{\gamma} f(z) d z \tag{5points}
\end{equation*}
$$

Choose 3 out of 6 problems:

1a) What are the Cauchy-Riemann equations? Explain precisely how they are related to complex differentiability (proofs not required).
(8 points)
1b) Show that the function $u(x, y)=-x^{4}+6 \cdot x^{2} \cdot y^{2}-y^{4}$ is harmonic.
1c) Find the harmonic conjugate $v(x, y)$
(10 points)
1d) Identify the analytic function $f(x+i \cdot y)=u(x, y)+i \cdot v(x, y)$ as an elementary complex analytic function that you recognize.

2a) Define $\log (z)$.
2b) Prove $e^{\log (z)}=z$, no matter what branch of the argument is used for the logarithm.
2c) Use (2b) and the chain rule to deduce that the derivative of $\log (z)$ is $\frac{1}{z}$.

2d) If you choose branch of the logarithm, so that $0<\arg (z)<2 \cdot \pi$, then explain for which z the following identity does hold, and for which z it doesn't:

$$
\begin{equation*}
\log z^{3}=3 \log z \tag{10points}
\end{equation*}
$$

Hint: Write $z=r \cdot e^{i \theta}$ with $0<\theta<2 \pi$, and notice that the two sides can differ at most by integer multiples of $2 \cdot \pi \cdot i$.

3a) Define a branch of the function

$$
f(z)=\sqrt{z^{2}-4}
$$

on a simply connected branch domain consisting of the complex plane complement two rays, and containing the closed unit disk $|z| \leq 1$.
(10 points)
3b) Explain why your branch domain is simply connected, by exhibiting a general homotopy formula which will homotopy all closed curves to a point, through closed curves.

3c) For this branch of $\sqrt{z^{2}-4}$, what is

$$
\int_{|z|=1} \sqrt{z^{2}-4} d z
$$

where the unit circle is traversed once counterclockwise? Justify your answer using Theorems we've proved in this class.

4a) Let γ be any piecewise C^{l} curve from the point -2 to the point i in the complex plane. Using the fundamental theorem of Calculus for contour integration, deduce the value of

$$
\int_{\gamma} z d z
$$

(10 points)
4b) Explicitly compute the contour integral above by using any piecewise C^{l} (or C^{1}) curve you like which connects -2 to i.
(10 points)
4c) State and prove the fundamental theorem of Calculus, for contour integrals of analytic functions with antiderivatives, for C^{l} contours.
5) Let

$$
\gamma(t)=i+2 \mathrm{e}^{i t}+\mathrm{e}^{4 i t}, 0 \leq t \leq 2 \cdot \pi
$$

In case you're having trouble visualizing the image curve, here is a picture of it:

5a) Carefully sketch the (image of the) curve $\alpha(t)=i+2 \cdot e^{i t}, 0 \leq t \leq 2 \cdot \pi$ onto the sketch above, making it clear with words and your sketch what geometric object is traced out by the curve α (include this question sheet with the solutions you hand in).

5b) Find a homotopy through closed curves, from $\gamma(t)$ to the curve $\alpha(t)$ above, such that the homotopy avoids the point i. Make estimates to prove that your homotopy does avoid i.

5c) Using the definition of contour integral (problem B above), compute

$$
\int_{\alpha} \frac{1}{z-i} d z
$$

(10 points)
5d) State and use the deformation theorem for closed curves, to deduce the value of

$$
\int_{\gamma} \frac{1}{z-i} d z
$$

6a) Use Green's Theorem to prove that the sum of the contour integrals (properly oriented) around the piecewise C^{1} boundary curves of a bounded domain A (possibly containing holes) is zero, assuming the integrand function $f(z)$ is analytic and C^{1} on a larger domain containing the closure of A.
(20 points)
6b) Using the theorem in (6a), or any other method you can justify, deduce the value of

$$
\int_{|z|=2} \frac{1}{z \cdot(z-1)} d z
$$

