Math 4200
Monday Sept 10

• Discuss connectivity and chain rule for curves
 application from Monday.

Theorem: Let \(A \subseteq \mathbb{C} \) open and connected
\(f: A \to \mathbb{C} \) analytic, with \(f'(z) = 0 \) \(\forall z \)

Then \(f \) is constant

Proof: Let \(z_0 \in A \), \(f(z_0) = c \).
\(B = \{ z \in A \mid f(z) = c \} \)

• \(B \) is closed because \(f \) is continuous and
 \(B = f^{-1}(\{c\}) \) is the preimage of a closed set

• \(B \) is open: \(\) let \(z_1 \in B \)
 since \(A \) is open \(\exists D(z_0;r) \subseteq A \)
 we show \(D(z_0;r) \subseteq B \):
 Proof: let \(\epsilon > 0 \in \mathbb{R} \)
 \(\) let \(\gamma(t) = (1-t)z_1 + t z_2 \) \(\) \(0 \leq t \leq 1 \)
 be the segment from \(z_1 \) to \(z_2 \),
 contained in \(D(z_0;r) \).

 then \(f(z_2) - f(z_1) = \int_0^1 \frac{d}{dt} f(\gamma(t)) \, dt \)
 (F.T.C., applied to Ref, Imf)

 \[= \int_0^1 f'(\gamma(t)) \gamma'(t) \, dt \]
 (chain rule for curves)

 \[= 0 \Rightarrow f(z_2) = f(z_1) = c. \]

• Since \(B \) is open \& closed and non-empty, and since
 \(A \) is connected, \(B = A \)

Def: \(\gamma = [\gamma_1, \gamma_2, \ldots, \gamma_k] \) is a piecewise \(C^1 \) path if each
\(\gamma_i: [a_i, b_i] \to \mathbb{C} \) is \(C^1 \)
and \(\gamma_i(b_i) = \gamma_{i+1}(a_i) \) \(\) \(i = 1, 2, \ldots, k-1 \).

Remark: By reparameterizing one can always assume
\(a_{i+1} = b_i \) \(\) \(i = 1, 2, \ldots, k-1 \),
so that \(\gamma \) corresponds to a continuous path on the single interval
\([a_1, b_k] \).

Def: \(A \) is pathwise connected iff \(\forall \) \(z_0, z_1 \in A \) \(\exists \) cont. path \(\gamma: [a, b] \to A \)
with \(\gamma(a) = z_0 \)
\(\gamma(b) = z_1 \).
Theorem: If $A \subset C$ is open, then A is connected if and only if A is pathwise connected. Furthermore, in this case, $\forall z_0, z_1, z_2 \in A$ there is a pathwise C^1 path $\gamma = [\gamma_1, \gamma_2, \ldots, \gamma_k]$ connecting z_0 to z_1. (Each γ_i can in fact be taken as a constant speed line segment parameterization.)

pf: Let A be connected (and open).

Pick $z_0 \in A$.

Let $B \subset A$, $B = \{ z \in A \ s.t. \exists \text{ p.w. C}^1 \text{ path from } z_0 \text{ to } z \}$.

- B is open: if $z_1 \in B$, then $\exists \gamma \text{ s.t. } D(\gamma, r) \subset A$ for any $w \in D(\gamma, r)$, γ line-segment path from z_1 to w, which can be amalgamated with the p.w. C^1 path from z_0 to z_1 to give a p.w. C^1 path from z_0 to w.

- B is closed: let $z_1 \in \overline{B} \subset A$; $\exists \gamma \text{ s.t. } D(\gamma, r) \subset A$ for any $w \in D(\gamma, r)$.

So \exists p.w. C^1 path from z_0 to w amalgamating this with a line-segment path from w to z_1, so that $z_1 \in B$. Thus $\overline{B} = B$ (in A).

Now assume A is path connected.

If A is not connected $\exists B$ s.t. $B \subseteq A$, $B \neq \emptyset$, B is open and closed in A.

Pick $z_0 \in B$, $z_1 \in A \setminus B$ and $\gamma : [a, b] \rightarrow A$ a continuous path, $\gamma(a) = z_0$, $\gamma(b) = z_1$.

Let $t_1 = \sup \{ t \in [a, b] \ s.t. \gamma(t) \in B \}$.

If $\gamma(t_1) \notin B$ then B open $\Rightarrow \exists \gamma \text{ s.t. } D(\gamma(t_1), r) \subset A$ γ cont. $\Rightarrow \exists \gamma \text{ s.t. } D(\gamma(t_1), r) \subset A$.

Thus A is connected.

This part of the proof does not require A open; A path connected $\Rightarrow A$ connected in general.
Harmonic conjugates

Recall, if \(f(z) = u(x,y) + iv(x,y) \) is analytic and \(C^2 \) (\(u,v \) have continuous partials through 2nd order), then \(u \) (and \(v \)) are harmonic, since

\[
\begin{align*}
\nabla \left\{ \begin{array}{l}
\nabla u = \nabla v \\
\n\nabla v = -\nabla u
\end{array} \right. \Rightarrow u_{xx} = v_{yx} \quad \Rightarrow \quad u_{xx} + u_{yy} = 0
\end{align*}
\]

\(\text{and} \quad v_{yy} = u_{xy} \)

\(v_{xx} = -u_{yx} \)

so \(v_{xx} + v_{yy} = 0 \)

In this case, \(v \) is called the harmonic conjugate of \(u \).

Theorem. If \(u(x,y) \) is harmonic and \(C^2 \) in an open simply connected domain (e.g. \(D(2,0;1) \)), then

\(\exists \) harmonic conjugate \(v(x,y) \), unique up to an additive constant.

\(\text{pf:} \quad u(x,y) \in C^2 \) is given. The system for \(v(x,y) \) is

\[
\begin{align*}
\nabla v &= P(x,y) \quad (= -uy) \\
\n\nabla v &= Q(x,y) \quad (= ux)
\end{align*}
\]

When you study conservative vector fields and Green’s Theorem in multivariable calc, you learn that you can antidifferentiate to find \(v \) iff \(\nabla P = \nabla Q \), which holds since \(P_y = -u_{yy} = u_{xx} = Q_x \) since \(u \) is harmonic.

Example \(u(x,y) = xy \)

Show \(u \) is harmonic & find conjugate

\[
\begin{align*}
\nabla v &= \text{Polar form of conjugate} \\
\n\n\text{Integrate CR in polar cords to illustrate why domains which are not simply connected may not have global harmonic conjugates} \\
\end{align*}
\]

\[
\begin{align*}
\n\n\n\end{align*}
\]

\[
\begin{align*}
\n\n\n\end{align*}
\]

\[
\begin{align*}
\n\n\n\end{align*}
\]

\[
\begin{align*}
\n\n\n\end{align*}
\]