Math 4200
Wednesday Dec. 5.

Magic function prep for Gary's presentation Friday on the Riemann zeta for prime number theorem, following "Complex Analysis" by Ahlfors.

Infinite products!

\[
G(z) := \prod_{n=1}^{\infty} \frac{1}{1 + \frac{1}{n^2}} e^{-\frac{z}{n}} = \left(\prod_{n=1}^{\infty} \left(1 + \frac{z}{n^2}\right) e^{-\frac{z}{n}} \right) \lim_{N \to \infty} \left(\prod_{n=1}^{N} \left(1 + \frac{z}{n^2}\right) e^{-\frac{z}{n}} \right)
\]

\[e^{-\sum_{n=1}^{\infty} \frac{\log(1 + \frac{z}{n^2}) - \frac{z}{n}}{n}} \quad (|z| < 1)
\]

Thus \(G(z)\) has simple zeroes at each negative integer.

In fact:

\[
\frac{\sin \pi z}{\pi} = \pi G(z) G(-z)
\]

Check! \(\frac{\pi^2 G(z) G(-z)}{\sin \pi z} = F(z)\) is entire, no zeroes, so \(F(z) = e^f(z)\) where \(f(z) := \log F(z) + \int_{\frac{1}{2}}^{z} \frac{F(t)}{F'(t)} dt \)

\(\pi \cot \pi z + f'(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{1 + \frac{z}{n^2}} \right) + \sum_{n=1}^{\infty} \left(\frac{1}{1 - \frac{z}{n^2}} \right)
\]

\[\pi \cot \pi z + f'(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{1 + \frac{z}{n^2}} \right) + \sum_{n=1}^{\infty} \left(\frac{1}{1 - \frac{z}{n^2}} \right)
\]

\[\Rightarrow f''(z) = 0 \quad \Rightarrow F(z) \text{ const}; \quad \lim_{z \to 0} F(z) = 1 \quad \square\]
Back to \(G(z) \):

\[G(z-1) \text{ as zero (simple)} \text{ at } z-1 \text{ = neg integer} \]
\[z = 0, \text{ or } z = \text{neg. integer}. \]

Thus
\[G(z-1) = e^{\gamma} z G(z) \quad \text{where } \gamma(z) \text{ is entire. (See page 1 !)} \]

In fact, \(\gamma(z) \) is a constant, called Euler's constant \(\gamma \)

\[\text{check: log diff:} \]
\[\sum_{n=1}^{\infty} \left(\frac{1}{2-1+n} - \frac{1}{n} \right) = \gamma' + \frac{1}{z} + \sum_{n=1}^{\infty} \frac{1}{z+n} - \frac{1}{n} \]
\[\gamma' = \gamma' + \frac{1}{z} \quad ; \quad \gamma(z) = \text{const} \]
\[\gamma = \gamma(1) \]

But \(G(1) = 1 \)
\[\therefore G(z) = \frac{1}{z} e^{\gamma(1)} \]

\[\therefore \quad e^{\gamma} = G(1) = \prod_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) e^{-\frac{1}{n}} \]
\[\Rightarrow \quad e^{\gamma} = G(1) = \prod_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) e^{-\frac{1}{n}} \]
\[\therefore \quad \gamma = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n} \right) \]
\[\approx 0.57722 \]

\[T(1) = \frac{e^{\gamma}}{G(1)} = 1 \quad \Rightarrow \quad T(z) = z T(z-1) = z! \]

\[T(2) = 2 \cdot 1 = 2! \]
\[T(3) = 3 \cdot 2 = 3! \]
\[\vdots \]
\[T(n) = n! = (n-1)! \]

\[T \] is the factorial function.

Also

\[T(z) T(1-z) = T(z) (-z) T(-z) = (-z) \left(\frac{1}{z} \right) \left(\frac{1}{G(z) G(-z)} \right) = \prod_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) e^{-\frac{1}{n}} \]

Another formula for \(T(z) \), valid for \(Re z > 0 \):

\[T'(z) = \int_{0}^{\infty} e^{-z t} t^{z-1} dt \]

\[\left(T(z) = \frac{1}{z} e^{\gamma(1)} \right) \quad \text{trouble is at } t = 0, \text{ not } t = \infty \)