Interesting geometric fact: the level curves of harmonic conjugates are always L. There are 2 good explanations of this fact:

Example: $f(z) = z^2$

$u = x^2 - y^2, \quad v = 2xy$
Differentiation of basic functions

\[e^z \rightarrow \frac{d}{dz} e^z = e^z \quad (\text{HW}) \]

\[\cos z \]

\[\sin z \]

\[\cosh z \]

\[\sinh z \]

\[\tan z \]

etc.

\[\log z = \ln |z| + i \arg z \]

principal branch

\[-\pi < \arg z < \pi \]

(could use other branches)

\[\frac{d}{dz} \log z = \frac{1}{z} \]

give 2 proofs: (a) lnv fn thm

(b) CR.

\[z^a = e^{a \log z} \]

\[\Rightarrow z^{\frac{1}{n}} = ? \]

\[a^z = e^{z \log a} \]

There are subtle questions related to finding branches of funs, e.g. \(\sqrt[3]{z} \) (in book)

\(\sin^{-1}(z), \cos^{-1}(z) \) (in HW)