Where we are:

- If \(A \) is any \underline{open} set and if \(f(z) \) has an antiderivative \(F(z) \) in \(A \) (continuous), then contour integrals \(\int_C f(z) \, dz \) in \(A \) are path independent.

- Path independence in a \underline{connected} open set is equivalent to \(\exists F \text{ s.t. } F'(z) = f(z) \; \forall z \in A \) for \(\int_C f(z) \, dz \)

- If \(A \) is open and \underline{simply connected} and \(f \in C^1(A) \) is analytic, then integrals \(\int_C f(z) \, dz \) are path independent, so also \(\int_C f(z) \, dz \) (used Green's Thm)

We have proven the \textbf{1st} two theorems carefully, but the third one only \underline{semi} carefully since we didn't precisely understand simply connected, and couldn't show path independence for all paths.

We've proven the first two theorems carefully, but the third one only semi-carefully. Since we didn't precisely understand simply connected, and couldn't show path independence for all paths.

The goal of \(\text{Sec. 2.3} \) is to understand this theorem and the \textbf{deformation theorem} precisely (about switching contours w/o changing the value of the contour integral).

Key Step:

Theorem:

Local

Antiderivative (is special case) Let \(D(\mathbf{z}_0, r) = \{ z \mid |z - z_0| < r \} \). Let \(f : D(\mathbf{z}_0, r) \to \mathbb{C} \) be complex differentiable \(\forall z \in D(\mathbf{z}_0, r) \). Then \(\exists F : D \to \mathbb{C} \) s.t. \(F'(z) = f(z) \; \forall z \in D \).

Note: do not need \(f \in C^1 \) or Green's Thm.

The key step Theorem will follow from:

Lemma: Let \(R = [a, b] \times [c, d] \) be any rectangle (sides // to coord dirs) in \(D \) Let \(\gamma = \partial R \) (counterclockwise orientation)

Then \(\oint_{\gamma} f(z) \, dz = 0 \)
Assuming lemma for now, define local antidiff them:

Define \(F(w) = \int f(z) \, dz \) where \(\gamma_w = \gamma_{w_1} + \gamma_{w_2} \)

\[\begin{align*}
\text{with} & \quad \gamma_{w_1} + \gamma_{w_2} \\
& \quad \text{horiz} \quad \text{vert}
\end{align*} \]

Must compare \(F(w+h) \) to \(F(w) \).

Write \(\gamma_w = \gamma_1 + \gamma_2 \).

\(\gamma_{w+h} = \alpha_1 + \alpha_2 + \beta_2 \)

\(\text{with} \quad \alpha_1 + \beta_1 = \gamma_1 \)

and \(\beta_3 + \beta_2 \) the horizontal then vertical displacement curve from \(w \) to \(w+h \).

So \(F(w+h) = \int f(z) \, dz \)

\[\begin{align*}
& \quad \alpha_1 + \alpha_2 + \beta_2 \\
F(w) = & \int f(z) \, dz \\
& \quad \alpha_1 + \beta_1 + \gamma_2
\end{align*} \]

So \(F(w+h) - F(w) = \int f(z) \, dz \)

\[\begin{align*}
& \quad \alpha_1 + \alpha_2 + \beta_2 \\
& \quad \gamma_1 + \gamma_2 \\
& \quad \beta_3 + \beta_2 \\
& \quad \gamma_2 - \beta_1 + \alpha_2 \\
& \quad \beta_3 \\
& \quad \text{by rectangle lemma}
\end{align*} \]

So \(F(w+h) - F(w) = \frac{f(w)h}{\text{h}} + \varepsilon(h) \), where \(\varepsilon(h) \to 0 \) as \(h \to 0 \).
Rectangle Lemma

Let R be a rectangle with diagonal length D and perimeter P.

\[\gamma = \text{join of 4 paths}. \]

We want \(\oint_{\gamma} f(z) \, dz = 0 \).

\[\oint_{\gamma} f(z) \, dz = \oint_{\gamma_1} f(z) \, dz + \oint_{\gamma_2} f(z) \, dz + \oint_{\gamma_3} f(z) \, dz + \oint_{\gamma_4} f(z) \, dz. \]

\[|\oint_{\gamma} f(z) \, dz| \leq |\oint_{\gamma_1} f(z) \, dz| + |\oint_{\gamma_2} f(z) \, dz| + |\oint_{\gamma_3} f(z) \, dz| + |\oint_{\gamma_4} f(z) \, dz|. \]

where \(|\oint_{\gamma} f(z) \, dz| \) is the max of the 4 values.

Let \(\gamma_1 = \partial R_1 \) and pick \(\gamma_2 = \partial R_2 \) s.t.

\[|\oint_{\gamma} f(z) \, dz| \leq 4 |\oint_{\gamma_1} f(z) \, dz|. \]

Induct: \(R \supset R_1 \supset R_2 \supset \ldots \supset R_k \)

\[|\oint_{\gamma} f(z) \, dz| \leq 4^k |\oint_{\gamma_{k+1}} f(z) \, dz|. \]

Let \(\bigcap_{k=1}^{\infty} \text{cl}(R_k) = \mathbb{Z}_0 \) (analysis!)

(a decreasing intersection of nonempty compact sets \emptyset is itself non-empty)

\(D_k = \text{diam}(R_k) = 2^k D \)

\(P_k = \text{per}(R_k) = 2^k P \)

\(D \) can come with a sequence argument.)
\textbf{punchline}:

\(f \) is analytic at \(z_0 \).

For \(z \) near \(z_0 \)

\[f(z) = f(z_0) + f'(z_0)(z - z_0) + e(z) \]

\[\frac{e(z)}{z - z_0} \to 0 \quad \text{as} \quad z \to z_0 \]

Let \(\varepsilon > 0 \).

Pick \(k \) s.t.

\[|\frac{e(z)}{z - z_0}| < \varepsilon \quad \forall z \in R_k \]

\[\left| \int_{\delta_k} f(z) \, dz \right| = \left| \int_{\delta_k} f(z_0) \, dz + \int_{\delta_k} f'(z_0)(z - z_0) \, dz + \int_{\delta_k} e(z) \, dz \right| \]

\[\Rightarrow \quad \int_{\delta_k} f(z) \, dz = 0 \]

\[\Rightarrow \quad \int_{\delta_k} f(z_0) \, dz = 0 \]

\[\Rightarrow \quad \int_{\delta_k} e(z) \, dz = 0 \]

\[\Rightarrow \quad \int_{\delta_k} f(z) \, dz = 0 \]

\[\Rightarrow \quad \int_{\delta_k} e(z) \, dz = 0 \]

\[\Rightarrow \quad |\int_{\delta_k} f(z) \, dz| = |\int_{\delta_k} e(z) \, dz| \]

\[\leq \int_{\delta_k} |e(z)| \, dz \]

\[\leq \int_{\delta_k} \frac{\varepsilon}{z - z_0} \, dz \]

\[\leq \int_{\delta_k} \varepsilon |z - z_0| \, dz \]

\[\leq \int_{\delta_k} \varepsilon D_k \, dz = \varepsilon D_k P_k = \varepsilon 4^{-k} D \]

\textbf{Using} \(\varepsilon \) \textbf{on page 1},

\[\varepsilon \leq 4^k \varepsilon 4^{-k} D P = \varepsilon D \]

\(\varepsilon \) \textbf{was arbitrary!}

\[\Rightarrow \quad \left| \int_{\delta_k} f(z) \, dz \right| = 0 \]

\[\Rightarrow \quad \int_{\delta_k} f(z) \, dz = 0 \]