Math 4200
Friday 2 Sept

HW 1.6 cont'd

We shall use 1.6 as a reference section for 3220 topics, as needed, and now proceed to 1.6.5.

Def For \(z_0 \in \mathbb{C}, \rho > 0 \), \(D(z_0, \rho) = \{ z \in \mathbb{C} \mid |z - z_0| < \rho \} \)

Def A \subseteq \mathbb{C} is open iff \(\forall z \in A \exists \rho > 0 \text{ st. } D(z, \rho) \subseteq A \)

Let \(A \subseteq \mathbb{C} \) open

\(z_0, \rho \in A \)

\(f : A \to \mathbb{C} \)

\[\lim_{z \to z_0} f(z) = L \iff \forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } |z - z_0| < \delta \Rightarrow |f(z) - L| < \varepsilon \]

HW 1: If \(\lim_{z \to z_0} f(z) = L \) and \(\lim_{z \to z_0} g(z) = M \), prove

1. \(\lim_{z \to z_0} f(z) + g(z) = L + M \)
2. \(\lim_{z \to z_0} f(z)g(z) = LM \)
3. \(\lim_{z \to z_0} \frac{1}{g(z)} = \frac{1}{M} \) provided \(M \neq 0 \)
4. \(\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{L}{M} \) provided \(M \neq 0 \)

Def \(A \subseteq \mathbb{C} \) open, \(f : A \to \mathbb{C}, \) \(f \) is cont at \(z_0 \) iff \(\lim_{z \to z_0} f(z) = f(z_0) \)

Cor of HW 1: sums, products of cont fms are cont.
also quotients if denom \(\neq 0 \).
Def \(A \subset \mathbb{C} \) open
\[f: A \to \mathbb{C} \]
\(\exists \ f \) is complex differentiable at \(z_0 \) iff
\[\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = f'(z_0) \] exists.

Note, this limit is the same as
\[\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \]

Lemma \(f \) is differentiable at \(z_0 \), with \(f'(z_0) = b \) iff there holds an affine approx:
(we did this Monday already)
\[f(z_0 + h) = f(z_0) + h \cdot b + e(h), \quad \text{where} \quad \lim_{h \to 0} \frac{e(h)}{h} = 0 \]

pf: \(\Rightarrow \) : if \(\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = b \)
then \(\lim_{h \to 0} \left(\frac{f(z_0 + h) - f(z_0) - b}{h} \right) = 0 \)
\[= \hat{e}(h) \]
and \(f(z_0 + h) = f(z_0) + h \cdot b + h \cdot \hat{e}(h) \)
\[: = e(h) \]

\(\Leftarrow \) : if \(f(z_0 + h) = f(z_0) + h \cdot b + e(h) \)
\[\text{where} \quad \lim_{h \to 0} \frac{e(h)}{h} = 0 \]
then \(\frac{f(z_0 + h) - f(z_0)}{h} = b + \frac{e(h)}{h} \)
\[\Rightarrow \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = b \]

Cor f diff at \(z_0 \) \(\Rightarrow \) f cont at \(z_0 \)
Theorem \(f, g \) diff at \(z_0 \) \(\Rightarrow \) \(f + g, f \cdot g \) are, also \(f/g \) if \(g(z_0) \neq 0 \). And
\[(f + g)'(z_0) = f'(z_0) + g'(z_0) \]
\[(fg)' = f'g + fg' \]
\[(f/g)' = \frac{f'g - fg'}{g^2} \]

If \(e.g. \) \((fg)'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h)g(z_0 + h) - f(z_0)g(z_0)}{h} \)
\[= \lim_{h \to 0} \frac{f(z_0 + h)(g(z_0 + h) - g(z_0)) + (f(z_0 + h) - f(z_0))g(z_0)}{h} \]
\[= fg' + f'g \] by limit thms page 1.

HW2 Prove the quotient rule
Chain rule: If f is differentiable at z_0 & g is differentiable at $f(z_0)$
then $(gof)'(z_0)$ exists and equals $g'(f(z_0))f'(z_0)$.

pf1: Use real variables chain rule (3220):
from page 2 & previous notes: we know that $f = uv$ is C^1 differentiable at $z_0 = x_0 + iy_0$ iff $F(x, y) = (u(x, y), v(x, y))$ is real-differentiable at (x_0, y_0),
with deriv matrix $\begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ at x_0.

where $F'(z_0) = a + bi$

HW3: Apply real vars chain rule (composition of differentiable maps $G \circ F$ is differentiable with deriv matrix $D(G \circ F)(z_0) = [DG(F(z_0))] \cdot [DF(z_0)]$)
to deduce C-chain rule above.

pf2: Idea: $\lim_{z \to z_0} \frac{g(f(z)) - g(f(z_0))}{z - z_0} = \lim_{z \to z_0} \frac{g(f(z)) - g(f(z_0))}{z - z_0} \cdot \frac{f(z) - f(z_0)}{z - z_0}$

not rigorous because $f(z) - f(z_0)$ is possible

book's slick fix: Write $f(z_0) = w_0$
define $H(w) = \begin{cases} \frac{g(w) - g(w_0)}{w - w_0} - g'(w_0) & w \neq w_0 \\ 0 & w = w_0 \end{cases}$

By hypothesis H is continuous at w_0.

Since composition of continuous functions is continuous, $Hf + f = Hf + f = 0$

$\lim_{z \to z_0} H(f(z)) = H(f(z_0)) = 0$

For $z \neq z_0$, $g(f(z)) - g(f(z_0)) = \left[H(f(z)) + g'(w_0) \right] \cdot \left[\frac{f(z) - f(z_0)}{z - z_0} \right]$
check! $f(z_0) = w_0$

Now take $\lim_{z \to z_0} !$