Math 2280-002

Week 4-5 concepts and homework, due February 6.

Recall that problems which are not underlined are good for seeing if you can work with the underlying concepts; that the underlined problems are to be handed in; and that the Wednesday quiz will be drawn from all of these concepts and from these or related problems.

2.6: 4: (postponed from last week)

3.1: 1, $\underline{6}$, (in 6 use initial values y(0) = 10, y'(0) = -5 rather than the ones in the text), $\underline{10}$, 11, $\underline{12}$, $\underline{14}$ (In 14 use the initial values y(1) = 1, y'(1) = 7 rather than the ones in the text.), 17, $\underline{18}$, $\underline{27}$, 33, 39. 3.2: 1, 2, 5, $\underline{8}$, 11,13, $\underline{16}$, 21, $\underline{25}$, 26

Here are two problems that explicitly connect ideas from sections 3.1-3.2 with linear algebra concepts from Math 2270

w4.1) Consider the 3^{rd} order homogeneous linear differential equation for y(x)

$$v'''(x) = 0$$

and let W be the solution space.

a) Use successive antidifferentiation to solve this differential equation. Interpret your results using vector space concepts to show that the functions $y_0(x) = 1$, $y_1(x) = x$, $y_2(x) = x^2$ are a basis for W. Thus the dimension of W is 3.

b) Show that the functions $z_0(x) = 1$, $z_1(x) = x - 2$, $z_2(x) = \frac{1}{2}(x - 2)^2$ are also a basis for W. Hint:

If you verify that they solve the differential equation and that they're linearly independent, they will automatically span the 3-dimensional solution space and therefore be a basis.

c) Use a linear combination of the solution basis from part \underline{b} , in order to solve the initial value problem below. Notice how this basis is adapted to initial value problems at $x_0 = 2$, whereas for an IVP at $x_0 = 0$ the basis in \underline{a} would have been easier to use.

$$y'''(x) = 0$$

 $y(2) = 7$
 $y'(2) = -13$
 $y''(2) = 5$.

w4.2) Consider the three functions

$$y_1(x) = \cos(2x), \ y_2(x) = \sin(2x), y_3(x) = \sin\left(2x - \frac{\pi}{6}\right).$$

a) Show that all three functions solve the differential equation

$$v'' + 4v = 0$$
.

b) The differential equation above is a second order linear homogeneous DE, so the solution space is 2-dimensional. Thus the three functions y_1, y_2, y_3 above must be linearly dependent. Find a linear dependency. (Hint: use a trigonometry addition angle formula.)

c) Explicitly verify that every initial value problem

$$y'' + 4 y = 0$$

 $y(0) = b_1$
 $y'(0) = b_2$

has a solution of the form $y(x) = c_1 \cos(2x) + c_2 \sin(2x)$, and that c_1 , c_2 are uniquely determined by

 b_1, b_2 . (Thus $\cos(2x), \sin(2x)$ are a basis for the solution space of y'' + 4y = 0: every solution y(x) has initial values that can be matched with a linear combination of y_1, y_2 , but once the initial values match the solutions must agree by the uniqueness theorem, so y_1, y_2 span the solution space; y_1, y_2 are linearly independent because if $c_1\cos(2x) + c_2\sin(2x) = y(x) \equiv 0$ then y(0) = y'(0) = 0 so also $c_1 = c_2 = 0$.)

d) Find by inspection, particular solutions y(x) to the two non-homogeneous differential equations

$$y'' + 4y = 28$$
, $y'' + 4y = -16x$

Hint: one of them could be a constant, the other could be a multiple of x.

e) Use superposition (linearity) and your work from **c,d** to find the general solution to the non-homogeneous differential equation

$$y'' + 4y = 28 - 16x$$
.

<u>f</u>) Solve the initial value problem, using your work above:

$$y'' + 4y = 28 - 16x$$

 $y(0) = 0$
 $y'(0) = 0$.

<u>w4.3)</u> Runge-Kutta is based on Simpson's rule for numerical integration. Simpson's rule is based on the fact that for a subinterval [d, d + h] of length h, the parabola y = p(x) which passes through the points

$$(d, y_0)$$
, $\left(d + \frac{h}{2}, y_1\right)$, $\left(d + h, y_2\right)$ has integral
$$\int_{d}^{d+h} p(x) dx = \frac{h}{6} \cdot \left(y_0 + 4y_1 + y_2\right).$$

a) The integral approximation above follows from one on the interval [-1, 1] by an affine change of variables. So first consider the interval [-1, 1]. We wish to find the parabolic function

$$q(x) = a x^2 + b x + c$$

with unknown parameters a, b, c. We want $q(-1) = y_0$, $q(0) = y_1$, $q(1) = y_2$. This gives 3 equations in 3 unknowns, to find a, b, c in terms of y_0 , y_1 , y_2 , namely

$$q(0) = y_1 = c$$

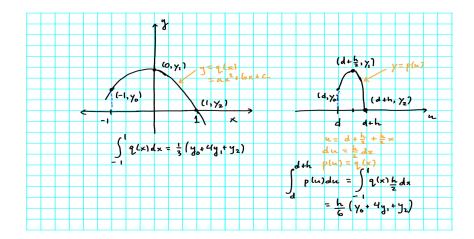
 $q(1) = y_2 = a + b + c$
 $q(-1) = y_0 = a - b + c$

Find *a*, *b*, *c*.

b) Compute $\int_{-1}^{1} q(x) dx$ for thes values of a, b, c you find in part a, and verify the equality

$$\int_{-1}^{1} q(x) \, dx = \frac{1}{3} (y_0 + 4y_1 + y_2)$$

Note, the formula for general interval follows from a change of variables, as indicated below:



Remark: If you've forgotten, or if you never talked about Simpson's rule in your Calculus class, here's how it goes: In order to approximate the definite integral of f(x) on the interval [a, b], you subdivide [a, b] into n subintervals of width $\Delta x = \frac{b-a}{n} = h$. Then add the midpoints of each subinterval. Label these x- values (including midpoints) as

$$x_0 = a, x_1 = a + \frac{h}{2}, x_2 = a + h, x_3 = x_0 + \frac{3h}{2}, x_4 = x_0 + 2h, \dots x_{2n} = x_0 + 2nh = b,$$

with corresponding y-values $y_i = f(x_i)$, i = 0,...2 n. On each successive pair of intervals $[x_{2k}, x_{2k+1}]$ use the parabolic estimate

$$\int_{x_{2k}}^{x_{2k}+h} f(u) du \approx \frac{h}{6} \cdot (f(x_{2k}) + 4f(x_{2k+1}) + f(x_{2k+2})) = \frac{h}{6} \cdot (y_{2k} + 4y_{2k+1} + y_{2k+2})$$

above, estimating the integral of f by the integral of the interpolating parabola on the subinterval. This yields the very accurate (for large enough n) Simpson's rule formula

$$\int_{a}^{b} f(x) dx \approx \frac{h}{6} \left(\left(y_0 + 4 y_1 + y_2 \right) + \left(y_2 + 4 y_3 + y_4 \right) + \dots + \left(y_{2n-2} + 4 y_{2n-1} + y_{2n} \right) \right),$$

i.e.

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6n} \left(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 2y_{2n-2} + 4y_{2n-1} + y_{2n} \right).$$

http://en.wikipedia.org/wiki/Simpson's rule

<u>w4.4</u>) (Famous numbers revisited, section 2.6, page 135, of text). The mathy numbers e, $\ln(2)$, π can be well-approximated using approximate solutions to differential equations. We illustrate this on Wednesday Jan 30 for e, which is v(1) for the solution to the IVP

$$y'(x) = y$$
$$y(0) = 1.$$

Apply Runge-Kutta with n = 10, 20, 40... subintervals, successively doubling the number of subintervals until you obtain the target number below - rounded to 8 decimal digits - twice in succession. We will do this in class for e, and you can modify that code if you wish, or use Matlab code that I will post to CANVAS.

<u>a</u>) $\ln(2)$ is y(2), where y(x) solves the IVP

$$y'(x) = \frac{1}{x}$$
$$y(1) = 0$$

(since $y(x) = \ln(x)$).

b) π is y(1), where y(x) solves the IVP

$$y'(x) = \frac{4}{x^2 + 1}$$

 $y(0) = 0$

(since $y(x) = 4 \arctan(x)$ and $\arctan(1) = \frac{\pi}{4}$).

Note that in <u>**a.b**</u> you are actually "just" using Simpson's rule from Calculus, since the right sides of these DE's only depend on the variable x and not on the value of the function y(x). For reference:

Digits := 16: #In Maple it's easy to specify the number of working digits for calculations. evalf (e); #evaluate the floating point of e evalf (π); evalf (ln(2));

0.6931471805599453 **(1)**

w4.5 Consider the following differential equation, which could be modeling the velocity in a linear drag problem for a falling object, if we choose "down" to be the positive direction:

$$v'(t) = 9.8 - .2 v.$$

- **a**) Find the terminal velocity
- **b)** Solve the IVP for this differential equation with initial condition v(0) = 0. Verify that your solution limits to the terminal velocity.
- **<u>c)</u>** Modify the Matlab code posted on CANVAS to do the following:
- (i) Find the Euler, Improved Euler, and Runge Kutta numerical approximations to the solution of the IVP with n = 10 time steps, on the time interval $0 \le t \le 5$.
- (ii) Create a single display which contains the slope field for this differential equation in the box $0 \le t \le 5$, $0 \le v \le 50$; scatter plots of the Euler, Improved Euler and Runge Kutta approximations; and a plot of the actual solution.