Math 2280-002

Week 13 concepts and homework

9.1-9.3

Due Wednesday April 17

9.1 Fourier series for 2π - periodic functions

1, $\underline{2}$, $\underline{3}$, $\underline{9}$, $\underline{10}$, $\underline{30}$ (30 is important because it shows we can use any interval of length 2π to compute the Fourier coefficients of a 2π – periodic function; or any interval of length 2L for the Fourier coefficients of a 2L periodic function.)

9.2 General Fourier series for 2 L - periodic functions

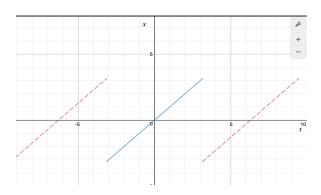
<u>2, 9</u>

9.3 sine and cosine series for odd and even extensions of functions defined on [0, L]

1, 5, 10

w13.1a Find the Fourier series for the "sawtooth" function saw(t), which is defined as the the 2π - periodic extension of

$$f(t) = t$$
, $-\pi < t < \pi$



Your answer should be

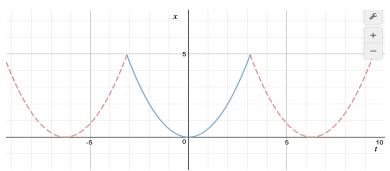
$$saw(t) \sim 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(n t).$$

<u>b</u> Create a plot at Desmos (or on other software) of the truncated Fourier series, containing the first 5 non-zero terms. Hand in a screen shot of your result.

w13.2a Use the fact that you can integrate Fourier series term by term, and the result of w13.1 to find the Fourier series for the 2π - periodic extension of

$$f(t) = \frac{t^2}{2}, \quad -\pi < t < \pi$$
.

Hint: Use the usual formula for $\frac{a_0}{2}$ to find the constant of integration.



b Since this function is piecewise differentiable and continuous, the Fourier series converges at every t – value, to the original function. Evaluate the Fourier series at t = 0 and at $t = \pi$ to get two mysterious equalities relating π^2 to two different infinite series.

<u>w13.3</u> Notice that the square wave sq(t) from class (and the text) is related to the f(t) in <u>9.2.2</u>. In fact,

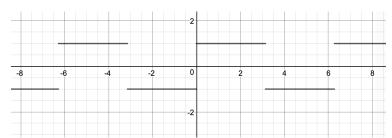
$$f(t) = \frac{1}{2} + \frac{1}{2} square \left(\frac{\pi}{5}t\right).$$

Use this connection, and the fact that sq(t) has Fourier series

$$sq(t) \sim \frac{4}{\pi} \sum_{n \text{ odd}} \frac{1}{n} \sin(n t)$$

to check your work in <u>9.2.2.</u> (Rescaling Fourier series in the domain and range, to get related Fourier series, can be very useful.)

The graph of sq(t):



The graph of the period 10 extension of

$$f(t) = \begin{cases} 0 & -5 < t < 0 \\ 1 & 0 < t < 5 \end{cases}$$

