3b) Show that every IVP

$$y'' - 2y' - 3y = 0$$

 $y(0) = b_0$
 $y'(0) = b_1$

can be solved with a unique linear combination $y(x) = c_1 y_1(x) + c_2 y_2(x)$, (where c_1 , c_2 depend on b_0 , b_1).

Then use the uniqueness theorem to deduce that y_1, y_2 span the solution space to this homogeneous differential equation. Since these two functions are not constant multiples of each other, they are linearly independent and a basis for the 2-dimensional solution space!

$$y(x) = c_1 y_1 + c_2 y_2 = c_1 e^{3x} + c_2 e^{x}$$

$$y'(x) = c_1 y_1' + c_2 y_2' = 3c_1 e^{3x} + c_2 e^{x}$$

$$\begin{bmatrix} y'(x) \\ y'(x) \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} e^{3x} & e^{x} \\ 3e^{3x} & -e^{-x} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$\begin{cases} w_{ranskion} & y_1, y_2 \\ w_{ranskion} & y_1, y_2 \\ w_{ranskion} & w_{ranskion} & w_{ranskion} \end{bmatrix}$$

$$\begin{cases} w_{ranskion} & w_{r$$

So by the uniqueness than (each IVP only has a single solth), It must be that
$$c_1e^{3x}+c_2e^{x}=y(x)$$
!

Theorem 3: The solution space to the second order homogeneous linear differential equation

$$y'' + p(x)y' + q(x)y = 0$$

is always 2-dimensional on any interval *I* for which the hypotheses of the existence-uniqueness theorem hold.

We'll see why this is always true, tomorrow.

•
$$y_1, y_2$$
 linearly ind.
(et: $c_1y_1 + c_2y_2 = 0$
 $\Rightarrow c_1y_1' + c_2y_2' = 0$

$$\begin{cases} y_1 & y_2 \\ y_1' & y_2' \end{cases} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} x = 0: \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
Shows ind.

Note: By showing the Wronskian matrix

of e3x, e-x, at x=0, is invertible

(i.e. its det 70)

we conclude both that {ex, e-x} span

solth space. And that they're

linearly independent.

i.e. a basis

Tues Feb 5:

3.1-3.2 Second order and n^{th} order linear differential equations, and vector space theory connections.

Announcements:

- · I'll be in the lab 2:00-3:00 after class
- continue on theorey/methods for 2nd order linear DE's than breeze through nth order (n>,2), "the same"

12:56

Warm-up Exercise: factor $p(r) = 1 \cdot r^3 + 3r^2 - r - 3$? | hint: all roots are integers = (r+1)(r+3)(r-1) \(roots must

r=-1,-3, 1.

e.q. p(i) = 1 + 3 - 1 - 3 = 0

50 (r-1) factor.

 $r^{2} + 4r + 3$ $r^{3} + 3r^{2} - r - 3$

 $-\frac{(r^{3}-r^{2})}{4r^{2}-r-3}$ $-\frac{(4r^{3}-4r)}{3r-3}$ $=(r-1)(r^{2}+4r+3)$ $=\frac{(3r-3)}{0}$ = (r-1)(r+3)(r+1)

Theorem 3: The solution space to the second order homogeneous linear differential equation

$$y'' + p(x)y' + q(x)y = 0$$

is 2-dimensional on any interval *I* for which the hypotheses of the existence-uniqueness theorem hold. proof:

Pick any $x_0 \in I$. Find solutions $y_1(x), y_2(x)$ to initial value problems at x_0 so that the so-called Wronskian matrix for y_1, y_2 at x_0

$$W(y_1, y_2)(x_0) = \begin{bmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{bmatrix}$$

is invertible (i.e. $\begin{bmatrix} y_1(x_0) \\ y_1'(x_0) \end{bmatrix}$, $\begin{bmatrix} y_2(x_0) \\ y_2'(x_0) \end{bmatrix}$ are a basis for \mathbb{R}^2 , or equivalently so that the determinant of the Wronskian matrix (called just the <u>Wronskian</u>) is non-zero at x_0).

• You may be able to find suitable y_1, y_2 by a method like we used in the last example on Monday, but the existence-uniqueness theorem guarantees they exist even if you don't know how to find formulas for them.

Under these conditions, the solutions y_1, y_2 are actually a <u>basis</u> for the solution space! Here's why:

• span: the condition that the Wronskian matrix is invertible at x_0 means we can solve each IVP there with a linear combination $y = c_1 y_1 + c_2 y_2$: In that case, to solve the IVP

$$y'' + p(x)y' + q(x)y = 0$$

 $y(x_0) = b_0$
 $y'(x_0) = b_1$

we set

$$y(x) = c_1 y_1(x) + c_2 y_2(x).$$

At x_0 we wish to find c_1 , c_2 so that

$$c_1 y_1(x_0) + c_2 y_2(x_0) = b_0$$

$$c_1 y_1'(x_0) + c_2 y_2'(x_0) = b_1$$

This system is equivalent to the the matrix equation

$$\begin{bmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}.$$

When the Wronskian matrix at x_0 has an inverse, the unique solution $\begin{bmatrix} c_1, c_2 \end{bmatrix}^T$ is given by

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{bmatrix}^{-1} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}.$$

Since the uniqueness theorem says each IVP has a unique solution, we've found it!

$$y(x) = c_1 y_1(x) + c_2 y_2(x).$$

- Span: Since each solution y(x) to the differential equation solves *some* initial value problem at x_0 , this gives all solutions, as we let $\begin{bmatrix} b_0, b_1 \end{bmatrix}^T$ vary freely in \mathbb{R}^2 . So each solution y(x) is a linear combination of y_1, y_2 . Thus $\{y_1, y_2\}$ spans the solution space.
- <u>Linear independence:</u> If we have the identity

$$c_1 y_1(x) + c_2 y_2(x) = 0$$

then by differentiating each side with respect to x we also have

$$c_1 y_1'(x) + c_2 y_2'(x) = 0.$$

Evaluating at $x = x_0$ this is the system

$$c_1 y_1(x_0) + c_2 y_2(x_0) = 0$$

$$c_1 y_1'(x_0) + c_2 y_2'(x_0) = 0$$

$$\begin{bmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

so

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Theorem 4: All solutions to the <u>nonhomogeneous</u> second order linear DE L(q) = y'' + p(x)y' + q(x)y = f(x)

are of the form $y = y_P + y_H$ where y_P is any single particular solution and y_H is some solution to the homogeneous DE. (y_H is called y_c , for complementary solution, in the text). Thus, if you can find a single particular solution to the nonhomogeneous DE, and all solutions to the homogeneous DE, you've actually found all solutions to the nonhomogeneous DE.

proof: Make use of the fact that

$$L(y) := y'' + p(x)y' + q(x)y$$

is a linear operator. In other words, use the linearity properties

(1)
$$L(y_1 + y_2) = L(y_1) + L(y_2)$$

$$(2) L(cy) = cL(y), c \in \mathbb{R}.$$

(et
$$L(y_P) = f$$
 (just saying that y_P is a single particular solth)

(et $L(y_H) = 0$ (""" y_H """ horog. solth)

then $y_P + y_H$ also solves $L(y) = f$

because $L(y_P + y_H) = L(y_P) + L(y_H)$
 $= f + 0 = f$

(2) (et y_Q be another particular solth

 $L(y_Q) = f$ also

write $y_Q = y_P + (y_Q - y_P)$
 $L(y_Q + (-y_P)) = L(y_Q) + L(-y_P)$

showed $y_Q = y_P + y_H$
 $= f - f = 0$

where $L(y_H) = 0!$

In Monday's notes we found that the general solution to the homogeneous differential equation

$$y'' - 2y' - 3y = 0$$

is

$$y_H = c_1 e^{-x} + c_2 e^{3x}$$
.

Now consider the non-homogeneous differential equation

$$y'' - 2y' - 3y = 6$$
.

Notice that

$$y_P = -2$$

is one particular solution to the differential equation. (If we'd guessed that there might be a constant solution, we could've substituted $v(x) \equiv d$ into the differential equation and deduced that d = 2.)

Exercise 1a) Solve the initial value problem

$$y'' - 2y' - 3y = 6.$$

 $y(0) = -1$
 $y'(0) = -5$

with a solution to the differential equation of the form

ifferential equation of the form
$$y'' - 2y' - 3y = 6.$$

$$y(0) = -1$$

$$y'(0) = -5$$

$$y = y_{P} + y_{H} = -2 + c_{1} e^{-x} + c_{2} e^{3x}.$$

$$y'(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

$$y'(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

$$y''(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

$$y''(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

$$y''(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

$$y''(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

$$y''(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

$$y''(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

$$y''(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

$$y''(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

$$y''(x) = y_{P} + y_{H} = 0 - c_{1} e^{x} + 3c_{2} e^{3x}$$

1b) Notice that the same algebra shows you could solve every initial value problem

$$y'' - 2y' - 3y = 6.$$

 $y(0) = b_0$
 $y'(0) = b_1$

with a solution of the form

$$y = y_P + y_H = -2 + c_1 e^{-x} + c_2 e^{3x}$$

so by the uniqueness theorem for initial value problems, these ALL the solutions to the differential equation even though we did not get them a direct method like we used for first order linear differential equations.

The theory for n^{th} order linear differential equations is conceptually the same as for second order...

<u>Definition:</u> An n^{th} order linear differential equation for a function y(x) is a differential equation that can be written in the form

$$A_n(x)y^{(n)} + A_{n-1}(x)y^{(n-1)} + \dots + A_1(x)y' + A_0(x)y = F(x)$$
.

We search for solution functions y(x) defined on some specified interval I of the form a < x < b, or (a, ∞) , $(-\infty, a)$ or (usually) the entire real line $(-\infty, \infty)$. In this chapter we assume the function $A_n(x) \neq 0$ on I, and divide by it in order to rewrite the differential equation in the standard form

$$y^{(n)} + a_{n-1}y^{(n-1)} + ... + a_1y' + a_0y = f.$$

 $(a_{n-1}, \dots a_1, a_0, f$ are all functions of x, and the DE above means that equality holds for all value of x in the interval I.)

Theorem 1 (Existence-Uniqueness Theorem): Let $a_{n-1}(x)$, $a_{n-2}(x)$,... $a_1(x)$, $a_0(x)$, f(x) be specified continuous functions on the interval I, and let $x_0 \in I$. Then there is a unique solution y(x) to the <u>initial value problem</u>

$$\begin{array}{c} y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = f \\ y(x_0) = b_0 \\ y'(x_0) = b_1 \\ y''(x_0) = b_2 \\ \vdots \\ y^{(n-1)} {x \choose 0} = b_{n-1} \end{array}$$

and y(x) exists and is n times continuously differentiable on the entire interval I.

The differential equation

$$y^{(n)} + a_{n-1}y^{(n-1)} + ... + a_1y' + a_0y = f$$

is called $\underline{\text{linear}}$ because the operator L defined by

$$L(y) := y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y$$

satisfies the so-called <u>linearity properties</u>

$$(1) L(y_1 + y_2) = L(y_1) + L(y_2)$$

$$(2) L(cy) = cL(y), c \in \mathbb{R}.$$

• The proof that L satisfies the linearity proporties is just the same as it was for the case when n = 2, which we checked.

The following two theorems only use the linearity properties of the operator L. I've kept the same numbering we used for the case n = 2.

Theorem 2: The solution space to the homogeneous linear DE

$$y^{(n)} + a_{n-1}y^{(n-1)} + ... + a_1y' + a_0y = 0$$

is a subspace.

Theorem 4: The general solution to the <u>nonhomogeneous</u> n^{th} order linear DE

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = f$$

is $y = y_P + y_H$ where y_P is any single particular solution and y_H is the general solution to the homogeneous DE. $(y_H$ is called y_c , for complementary solution, in the text).

Theorem 3: The solution space to the n^{th} order homogeneous linear differential equation $y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_1 y' + a_0 y \equiv 0$

$$y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y \equiv 0$$

is *n*-dimensional. Thus, any *n* independent solutions $y_1, y_2, \dots y_n$ will be a basis, and all homogeneous solutions will be uniquely expressible as linear combinations

$$y_H = c_1 y_1 + c_2 y_2 + \dots + c_n y_n.$$

proof: By the existence half of Theorem 1, we know that there are solutions for each possible initial value problem for this (homogenenous case) of the IVP for n^{th} order linear DEs. So, pick solutions $y_1(x), y_2(x), \dots, y_n(x)$ so that their vectors of initial values (which we'll call initial value vectors)

$$\begin{bmatrix} y_1(x_0) \\ y_1{}'(x_0) \\ y_1{}''(x_0) \\ \vdots \\ y_1^{(n-1)}(x_0) \end{bmatrix}, \begin{bmatrix} y_2(x_0) \\ y_2{}'(x_0) \\ \vdots \\ y_2^{(n-1)}(x_0) \end{bmatrix}, \dots, \begin{bmatrix} y_n(x_0) \\ y_n{}'(x_0) \\ \vdots \\ y_n{}''(x_0) \\ \vdots \\ y_n{}''(x_0) \end{bmatrix}$$

are a basis for \mathbb{R}^n (i.e. these n vectors are linearly independent and span \mathbb{R}^n . (Well, you may not know how to "pick" such solutions, but you know they exist because of the existence theorem.)

<u>Claim</u>: In this case, the solutions $y_1, y_2, \dots y_n$ are a basis for the solution space. In particular, every solution to the homogeneous DE is a unique linear combination of these n functions and the dimension of the solution space is n discussion on next page.

• Check that $y_1, y_2, ... y_n$ span the solution space: Consider any solution y(x) to the DE. We can compute its vector of initial values

$$\begin{bmatrix} y(x_0) \\ y'(x_0) \\ y''(x_0) \\ \vdots \\ y^{(n-1)}(x_0) \end{bmatrix} := \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_{n-1} \end{bmatrix}.$$

Now consider a linear combination $z = c_1 y_1 + c_2 y_2 + ... + c_n y_n$. Compute its initial value vector, and notice that you can write it as the product of the <u>Wronskian matrix</u> at x_0 times the vector of linear combination coefficients:

$$\begin{bmatrix} z(x_0) \\ z'(x_0) \\ \vdots \\ z^{(n-1)}(x_0) \end{bmatrix} = \begin{bmatrix} y_1(x_0) & y_2(x_0) & \dots & y_n(x_0) \\ y_1'(x_0) & y_2'(x_0) & \dots & y'_n(x_0) \\ \vdots & \vdots & \dots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \dots & y_n^{(n-1)}(x_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}.$$

We've chosen the $y_1, y_2, ... y_n$ so that the Wronskian matrix at x_0 has an inverse, so the matrix equation

$$\begin{bmatrix} y_1(x_0) & y_2(x_0) & \dots & y_n(x_0) \\ y_1'(x_0) & y_2'(x_0) & \dots & y_n'(x_0) \\ \vdots & \vdots & \dots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \dots & y_n^{(n-1)}(x_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix}$$

has a unique solution \underline{c} . For this choice of linear combination coefficients, the solution $c_1y_1+c_2y_2+...+c_ny_n$ has the same initial value vector at x_0 as the solution y(x). By the uniqueness half of the existence-uniqueness theorem, we conclude that

$$y(x) = c_1 y_1 + c_2 y_2 + \dots + c_n y_n$$
.

Thus $y_1, y_2, \dots y_n$ span the solution space.

- <u>linear independence</u>: If a linear combination $c_1y_1 + c_2y_2 + ... + c_ny_n \equiv 0$, then differentiate this identity n-1 times, and then substitute $x = x_0$ into the resulting n equations. This yields the Wronskian matrix equation above, with $\begin{bmatrix} b_0, b_1, ... b_{n-1} \end{bmatrix}^T = \begin{bmatrix} 0, 0, ..., 0 \end{bmatrix}^T$. So the matrix equation above implies that $\begin{bmatrix} c_1, c_2, ... c_n \end{bmatrix}^T = \mathbf{0}$. So $y_1, y_2, ... y_n$ are also <u>linearly independent</u>.
- Thus $y_1, y_2, \dots y_n$ are a <u>basis</u> for the solution space and the general solution to the homogeneous DE can be written as

$$y_H = c_1 y_1 + c_2 y_2 + \dots + c_n y_n$$
.

Let's do some new exercises that tie these ideas together. (We may do these exercises while or before we wade through the general discussions on the previous pages!)

Exercise 2) Consider the 3^{rd} order linear homogeneous DE for y(x): y'' - y' - 3y = 0.Find a basis for the 3-dimensional solution space, and the general solution. Use the Wronskian matrix (or determinant) to verify you have a basis. Hint: try exponential functions.

fry
$$y = e^{rx}$$

 $L(y) = e^{rx} \left[r^3 + 3r^2 - r - 3 \right]$
 $= e^{rx} \left[(r+3)(r-i)(r+i) \right] = 0 \quad r = -3, 1, -1$
 $y_1(x) = e^{-3x}, \quad y_2(x) = e^x, \quad y_1(x) = e^{-x}$