Linear algebra to the rescue...just extend our previous discussion:

Theorem: Let

$$L: V \rightarrow W$$

be a linear transformation between vector spaces, where $dim\ V = dim\ W = n$. Then for each $f \in W$ there exists unique $y \in V$ solving

$$L(y) = f$$

if and only if the only solution $y \in V$ to L(y) = 0 is the trivial solution y = 0.

Proof: Let $\beta = \{y_1, y_2, ..., y_n\}$ be a basis for V. Let $C = \{f_1, f_2, ..., f_n\}$ be a basis for W. Let A be the matrix for L with respect to these two bases. Specifically, A is the matrix which converts β coordinates of input vectors into C coordinates of the outputs of L:

$$[L(y)]_C = A[y]_{\beta}$$

Then the equation L(y) = f has a unique solution if and only if $[L(y)]_C = [f]_C$ does, i.e. if and only if the matrix equation

$$A[y]_{\beta} = [f]_C$$

has a unique solution. And this holds if and only if A reduces to the identity, i.e. if and only if $Nul A = \{0\}$, if and only if the only solution $y \in V$ to L(y) = 0 is the trivial solution y = 0.

QED

Method of undetermined coefficients ("Rule 2" page 190 text): Finding y_p for non-homogeneous linear differential equations

$$L(y) = f$$

If L has a factor $(D-r)^s$ and e^{rx} is also associated with (a portion of) the right hand side f(x) then the corresponding guesses you would have made in the "base case" need to be multiplied by x^s , as in Exercise 2. (There's also a current homework problem related to this case.) You may also need to use superposition, as in our Tuesday exercises, if different portions of f(x) are associated with different exponential functions.

Extended case of undetermined coefficients

f(x)	y_P	s > 0 when $p(r)$ has these roots:
$P_m(x) = b_0 + b_1 + \dots + b_m x^m$	$x^{s} (c_0 + c_1 x + c_2 x^2 + \dots + c_m x^m)$	r = 0
$b_1 \cos(\omega x) + b_2 \sin(\omega x)$	$x^{s} \left(c_{1} \cos(\omega x) + c_{2} \sin(\omega x) \right)$	$r = \pm i \omega$
$e^{ax}(b_1\cos(\omega x) + b_2\sin(\omega x))$	$x^{s} e^{ax} (c_{1} \cos(\omega x) + c_{2} \sin(\omega x))$	$r = a \pm i\omega$
$b_0 e^{a x}$	$x^{s}c_{0}e^{ax}$	r = a
$\left(b_0 + b_1 + \dots + b_m x^m\right) e^{a x}$	$x^{s} (c_{0} + c_{1}x + c_{2}x^{2} + \dots + c_{m}x^{m})e^{ax}$	r = a

 $e_{ox}^{ox} = 1$ $\times e^{ox} = \times$

Exercise 3) Set up the undetermined coefficients particular solutions for the examples below. When necessary use the extended case to modify the undetermined coefficients form for y_p . Use technology to check if your "guess" form was right.

$$L(y) := y^{(n)} + a_{n-1}y^{(n-1)} + ... + a_1y' + a_0y = f$$

3a)
$$y''' + 2y'' = x^2 + 6x$$

(So the characteristic polynomial for L(y) = 0 is $r^3 + 2r^2 = r^2(r+2) = (r-0)^2(r+2)$.)

$$y_{H}: y''' + 2y'' = 0$$

$$y_p = x^2 (d_1 x^2 + d_2 x + d_3)$$

$$\uparrow case 1 gness$$

$$\bigvee = \operatorname{Span} \left\{ x^{4}, x^{3}, x^{2} \right\}$$

$$[: \bigvee \rightarrow \bigvee = \operatorname{Span} \left\{ x^{2}, x^{1}, 1 \right\}$$

Differential equation solution:
$$y(x) = c_3 x^2 + c_2 x + c_1 + \frac{x^2}{160} + \frac{x^2}{12}$$

actual Wolfran alpha answer:

$$y(x) = c_1 + c_2 x + c_3 e^{2x} + \frac{x^9}{24} + \frac{5x^3}{12} - \frac{5x^2}{8}$$

3b)
$$y'' - 4y' + 13y = 4e^{2x}\sin(3x)$$

(So the characteristic polynomial for $L(y) = 0$ is

(So the characteristic polynomial for
$$L(y) = 0$$
 is
$$r^2 - 4r + 13) = (r - 2)^2 + 9 = (r - 2 + 3i)(r - 2 - 3i).$$

$$r = 2 \pm 3i$$

$$y_p = \chi' \left(d_1 e^{2x} \sin 3x + d_2 e^{2x} \cos 3x \right)$$

Differential equation solution: Wrong DE
$$y(x) \neq c_1 e^{2x} \sin(3x) + c_2 e^{2x} \cos(3x) + \frac{4}{37} e^{x} \sin(3x) + \frac{24}{57} e^{x} \cos(5x)$$

3c) $y'' + 5y' + 4y = 5\cos(2x) + 4e^x + 5e^{-x}$. (So the characteristic polynomial for L(y) = 0 is $p(r) = r^2 + 5r + 4 = (r + 4)(r + 1)$.) r = -1, -4 $y_{P_1} \quad \text{for} \quad L(y_{P_1}) = 5\cos 2x$ $y_{P_1} = d_1 \cos 2x + d_2 \sin 2x$ $y_{P_2} = d_3 e^x$ $y_{P_3} \quad \text{for} \quad L(y_{P_2}) = 4e^x$ $y_{P_2} = d_3 e^x$ $y_{P_3} \quad \text{degree of the polynomial for } L(y_{P_3}) = 5e^x$ Differential equation solution: $y_{P_3} \quad \text{degree of } y_{P_3} = d_4 x e^{-x}$ $y_{P_3} \quad \text{degree of } y_{P_3} + y_{P_3} + y_{P_3} + y_{P_4}$ Differential equation solution: $y_{P_3} \quad \text{degree } y_{P_4} + y_{P_4} + y_{P_5}$ $y_{P_3} \quad \text{degree of } y_{P_4} + y_{P_5}$ Differential equation solution: $y_{P_3} \quad \text{degree } y_{P_4} + y_{P_5}$ $y_{P_5} \quad \text{degree } y_{P_6}$ Differential equation solution: $y_{P_5} \quad \text{degree } y_{P_6}$ $y_{P_6} \quad \text{degree } y_{P_6}$ Differential equation solution: $y_{P_5} \quad \text{degree } y_{P_6}$ $y_{P_6} \quad \text{degree } y_{P_6}$ $y_{P_6} \quad \text{degree } y_{P_6}$ Differential equation solution: $y_{P_6} \quad \text{degree } y_{P_6}$ $y_{P_6} \quad \text{degree }$ Announcements: Finish 53.5 (2hd case of undefermined weef's).

Start 53.6

(confine on Monday...)

in \$3.6 we return to applications...

Warm-up Exercise: Solve the IVP for the forced undamped oscillator

problem below, for x1E)

$$\begin{cases} x'' + 9x = 80 \cos 5t & c \end{pmatrix} \times |t| = x_p + x_H \\ \times |0| = 0 & \times |t| = -5 \cos 5t + c_1 \cos 3t \\ \times '(0) = 0 & + c_2 \sin 3t \end{cases}$$

- a) x_H
 b) x_P
 c) IVP.
- a) x'' + 9x = 0 $p(r) = r^{2} + 9 = (r-3i)(r+3i)$ $x_{H}(t) = c_{1} \cos 3t + c_{2} \sin 3t$
- $\begin{array}{c} + \zeta \sin 3t \\ \times (0) = 0 = -5 + \zeta_1 \Longrightarrow \zeta_1 = 5 \\ \times'(0) = 0 = 3 \zeta_2 \Longrightarrow \zeta_2 = 0 \\ \hline \times (t) = -5 \cos 5t + 5 \cos 3t \\ \hline \times'' + \omega_0^2 \times = 0 \\ \text{Span } \{\cos \omega_0 t, \sin \omega_0 t\} \end{array}$

b) $x_{p}(t) = d_{1} \cos 5t + d_{2} \sin 5t$ $L(x_{p}) = d_{1} L(\cos 5t) + d_{2} L(\sin 5t)$ $= (d_{1})(-25 \cos 5t + 9 \cos 5t) + (d_{2})(-16 \sin 5t) = (80 \cos 5t)$ $+(0) \sin 5t$

would've worked.

<u>Section 3.6</u>: forced oscillations in mechanical systems (and as we shall see in section 3.7, also in electrical circuits) <u>overview</u>:

We study solutions x(t) to

$$m x'' + c x' + k x = F_0 \cos(\omega t)$$

using section 3.5 undetermined coefficients algorithms.

• undamped (c = 0): In this case the complementary homogeneous differential equation for x(t) is

$$m x'' + k x = 0$$

$$x'' + \frac{k}{m} x = 0$$

$$x'' + \omega_0^2 x = 0$$

which has simple harmonic motion solutions

$$x_H(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) = C_0 \cos(\omega_0 t - \alpha).$$

So for the non-homongeneous DE the section 5.5 method of undetermined coefficients implies we can find particular and general solutions as follows:

• $\omega \neq \omega_0 := \sqrt{\frac{k}{m}} \Rightarrow x_P = A\cos(\omega t)$ because only even derivatives, we don't need $\sin(\omega t)$ terms!!

$$\Rightarrow x = x_P + x_H = A\cos(\omega t) + C_0\cos(\omega_0 t - \alpha_0).$$

- $\omega \neq \omega_0$ but $\omega \approx \omega_0$, $A \approx C_0$ Beating!
- $\omega = \omega_0$ case 2 section 3.5 undetermined coefficients; since

$$p(r) = r^2 + \omega_0^2 = (r + i\omega_0)^1 (r - i\omega_0)^1$$

our undetermined coefficients guess is

$$\begin{aligned} x_P &= t^1 \left(A \cos \left(\omega_0 \ t \right) + B \sin \left(\omega_0 \ t \right) \right) \\ \Rightarrow x &= x_P + x_H = C \ t \cos \left(\omega \ t - \alpha \right) + C_0 \cos \left(\omega_0 t - \alpha_0 \right) \ . \end{aligned}$$
 ("pure" resonance!)

- damped (c > 0): in all cases $x_P = A\cos(\omega t) + B\sin(\omega t) = C\cos(\omega t \alpha)$ (because the roots of the characteristic polynomial are never purely imagninary $\pm i \omega$ when c > 0).
 - underdamped: $x = x_P + x_H = C \cos(\omega t \alpha) + e^{-pt} C_1 \cos(\omega_1 t \alpha_1)$.
 - critically-damped: $x = x_p + x_H = C \cos(\omega t \alpha) + e^{-pt}(c_1 t + c_2)$.
 - over-damped: $x = x_P + x_H = C \cos(\omega t \alpha) + c_1 e^{-r_1 t} + c_2 e^{-r_2 t}$.

- in all three damped cases on the previous page, $x_H(t) \to 0$ exponentially and is called the <u>transient solution</u> $x_{tr}(t)$ (because it disappears as $t \to \infty$).
- $x_p(t)$ as above is called the <u>steady periodic solution</u> $x_{sp}(t)$ (because it is what persists as $t \to \infty$, and because it's periodic).
- if c is small enough and $\omega \approx \omega_0$ then the amplitude C of $x_{sp}(t)$ can be large relative to $\frac{F_0}{m}$, and the system can exhibit <u>practical resonance</u>. This can be an important phenomenon in electrical circuits, where amplifying signals is important. We don't generally want pure resonance or practical resonance in mechanical configurations.

Forced undamped oscillations: (We'll discuss forced damped oscillations on Monday next week.) Exercise 1a) Solve the initial value problem for x(t):

$$x'' + 9x = 80 \cos(5t)$$

 $x(0) = 0$
 $x'(0) = 0$.

- 1b) This superposition of two sinusoidal functions <u>is</u> periodic because there is a common multiple of their (shortest) periods. What is this (common) period?
- 1c) Compare your solution and reasoning with the display at the bottom of this page.

