

All of the previous exercises rely on:

Method of undetermined coefficients (base case): Let $L: V \to V$ be a linear transformation, with V a finite dimensional vector space, and let $f \in V$. Then $\exists ! \ y_P \in V$ with $L(y_P) = f$ if and only if the only $y \in V$ for which L(y) = 0 is y = 0.

<u>why:</u> You definitely learned this fact in Math 2270, for the special case of matrix transformations $L: \mathbb{R}^n \to \mathbb{R}^n$ given by $L(\underline{x}) = A_{n \times n} \underline{x}$. (Each non-homogeneous matrix equation $A \underline{x} = \underline{b}$ has a unique solution \underline{x} if and only if A reduces to the identity matrix I, if and only if the only solution to the homogeneous equation $\underline{A} \underline{x} = \underline{0}$ is $\underline{x} = \underline{0}$.) The theorem above is a generalization of this fact to general linear transformations $L: V \to V$. In fact, if we pick a basis $\{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n\}$ for V, this base case of undetermined coefficients follows from the fact that the (square) matrix A for L V ith respect to this basis is invertible if and only if $Nul\ A = \{\underline{0}\}$.

Lyp=
$$f$$
 has unique soltn in V^{2} .

(iff coords agree)

A [yp]_B = [f]_B has unique soltn.

Wed Feb 20:

3.5: Finding y_p for non-homogeneous linear differential equations, continued,

$$L(y) = f$$

(so that you can use the general solution $y = y_p + y_H$ to solve initial value problems).

Announcements:

· Pick up your exams

· Quiz today on yesteday's & today's material

Pick the appropriate form for undetermined coefficients yp(x) "quess" Warm-up Exercise:

a)
$$y'' + 6y' + 9y = 4e^{-2x}$$

 $y_p = de^{-2x}$ $V = span\{e^{-2x}\}$ [-dim'l space

b)
$$y'' + 6y' + 9y = 18\cos 3x$$

$$= de^{-2x} \left[4 - 12 + 9 \right]$$

$$y'' + 6y' + 9y = 2e^{-3x}$$

$$V = span \left[\cos^3 x, \sin^3 x \right] = 4e^{-2x}$$

$$2 - din'l$$
on exam

c)
$$y'' + 6y' + 9y = 2e^{-3x}$$

$$V = span \{cossx, sinxywant\}$$

$$2 - din't$$

$$on exam$$

on examonine guess
$$y_p = de^{-3x}$$
 $y_p(x) = \sin 3x$

$$L(y_p) = dL(e^{-3x}) = de^{-3x}(9-18+9) = 0$$
oh oh.

Nok:
$$y_H$$
:
$$y'' + 6y' + 9y = 0$$

$$p(r) = r^2 + 6r + 9 = (r + 3)^2 = 0 \quad r = -3$$

$$y_H(x) = c_1 e^{-3x} + c_2 x e^{-3x}$$
return to this in class --- $y_P(x) = dx^2 e^{-3x}$

On Tuesday we discussed the base case of undetermined coefficients:

Method of undetermined coefficients (base case): If you wish to find a particular solution y_p , i.e.

 $L(y_P) = f$ and if the non-homogeneous term f is in a finite dimensional subspace V with the properties that

- (i) $L: V \rightarrow V$, i.e. L transforms functions in V into functions which are also in V; and
- (ii) The only function $g \in V$ for which L(g) = 0 is g = 0.

Then there is always a unique $y_p \in V$ with $L(y_p) = f$.

Exercise 1) Use the method of undetermined coefficients to guess the form for a particular solution $y_P(x)$ for a constant coefficient differential equation

$$L(y) := y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = f$$

(assuming the only such solution in your specified subspace that would solve the homogeneous DE is the zero solution):

1a)
$$L(y) = x^3 + 6x - 5$$

 $y_p = d_1 x^3 + d_2 x^2 + d_3 x + d_4$
 $V = \text{Span} \{x^3, x^2, x, 1\}$ $[:V \rightarrow V]$

1b)
$$L(y) = 4 e^{2x} \sin(3x)$$

$$y_p = d_1 e^{2x} \sin 3x + d_2 e^{2x} \cos 3x$$

$$\sqrt{-span} \left\{ e^{2x} \sin 3x, e^{2x} \cos 3x \right\}$$

$$\underline{1c} \ L(y) = x \cos(2 x)$$

$$V = d_1 \times cos2x + d_2 \times sin2x + d_3 \cdot cos2x + d_4 sin2x$$

$$V = span \{ \times cos2x, \times sin2x, \cos2x, \sin2x \}$$

$$L: V \rightarrow V$$

BUT LOOK OUT

$$= f'(x)e^{rx} + f(x)e^{rx}$$

"base case" conditions for undetermined coefficients). Instead try

 $y_D = dx e^x$ and factor $L = D^2 + 4D - 5[= [D + 5]] \circ [D - 1]$.

$$-5 (y_{p} = dxe^{x})$$

$$+4 (y_{p}' = de^{x} + dxe^{x})$$

$$+1 (y_{p}'' = 2de^{x} + dxe^{x})$$

$$+(y_{p}'' = 2de^{x} + dxe^{x})$$

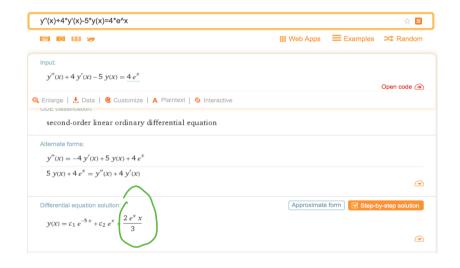
$$+(y_{p}' = 2de^{x} + dxe^{x})$$

$$+(y_{p}'' = 2de^{x} + dxe^{x})$$

Case 1 does not apply $(D+SI) \circ (D-I)(1\times e^{x})$ (D+SI) dex $= de^{x} + Sde^{x}$ = 6 dex Same

2b) check work with technology

BUT LOOK OUT



Linear algebra to the rescue...just extend our previous discussion:

Theorem: Let

$$L: V \rightarrow W$$

be a linear transformation between vector spaces, where $dim\ V = dim\ W = n$. Then for each $f \in W$ there exists unique $y \in V$ solving

$$L(y) = f$$

if and only if the only solution $y \in V$ to L(y) = 0 is the trivial solution y = 0.

Proof: Let $\beta = \{y_1, y_2, ..., y_n\}$ be a basis for V. Let $C = \{f_1, f_2, ..., f_n\}$ be a basis for W. Let A be the matrix for L with respect to these two bases. Specifically, A is the matrix which converts β coordinates of input vectors into C coordinates of the outputs of L:

$$[L(y)]_C = A[y]_{\beta}$$

Then the equation L(y) = f has a unique solution if and only if $[L(y)]_C = [f]_C$ does, i.e. if and only if the matrix equation

$$A[y]_{\beta} = [f]_C$$

has a unique solution. And this holds if and only if A reduces to the identity, i.e. if and only if $Nul A = \{0\}$, if and only if the only solution $y \in V$ to L(y) = 0 is the trivial solution y = 0.

QED

Method of undetermined coefficients ("Rule 2" page 190 text): Finding y_p for non-homogeneous linear differential equations

$$L(y) = f$$

If L has a factor $(D-r)^s$ and e^{rx} is also associated with (a portion of) the right hand side f(x) then the corresponding guesses you would have made in the "base case" need to be multiplied by x^s , as in Exercise 2. (There's also a current homework problem related to this case.) You may also need to use superposition, as in our Tuesday exercises, if different portions of f(x) are associated with different exponential functions.

Extended case of undetermined coefficients

f(x)	\mathcal{Y}_{P}	s > 0 when $p(r)$ has these roots:
$P_m(x) = b_0 + b_1 + \dots + b_m x^m$	$x^{s}(c_{0} + c_{1}x + c_{2}x^{2} + \dots + c_{m}x^{m})$	r = 0
$b_1 \cos(\omega x) + b_2 \sin(\omega x)$	$x^{s}(c_{1}\cos(\omega x) + c_{2}\sin(\omega x))$	$r = \pm i \omega$
$e^{ax}(b_1\cos(\omega x) + b_2\sin(\omega x))$	$x^{s}e^{ax}(c_{1}\cos(\omega x) + c_{2}\sin(\omega x))$	$r = a \pm i\omega$
$b_0 e^{a x}$	$x^{s}c_{0}e^{ax}$	r = a
$\left(b_0 + b_1 + \dots + b_m x^m\right) e^{a x}$	$x^{s} (c_{0} + c_{1}x + c_{2}x^{2} + \dots + c_{m}x^{m})e^{ax}$	r = a