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Math 2280-001  Week 13  April 10-14
Mon Apr 10
7.4 - 7.5

  The following Laplace transform material is useful in systems where we turn forcing functions on and 
off, and when we have right hand side "forcing functions" that are more complicated than what 
undetermined coefficients can handle.  

  f t  with   f t CeM t  F s
0

f t e s t dt  for s M    comments

  
u t a   unit step function   

e a s

s       for turning components on and 
off at t = a .

     f t a  u t a      e a sF s   more complicated on/off

  t a  e a s    unit impulse/delta "function"

  
0

t
f g t  d     F s G s

convolution integrals to invert 
Laplace transform products

The unit step function with jump at t = 0 is defined to be

u t = 
0,  t 0

1,  t 0
 .

IThis function is also called the "Heaviside" function, e.g. in Maple and Wolfram alpha.  In Wolfram alpha
it's also called the "theta" function.  Oliver Heaviside was a an accomplished physicist in the 1800's. The 
name is not because the graph is heavy on one side.  :-) 

http://en.wikipedia.org/wiki/Oliver_Heaviside
with plots :
 plot Heaviside t , t = 3 ..3, color = green, title = `graph of unit step function` ;

t
3 2 1 0 1 2 3

1
graph of unit step function

Notice that technically the vertical line should not be there - a more precise picture would have a solid point
at 0, 1  and a hollow circle at 0, 0 , for the graph of u t .  In terms of Laplace transform integral 
definition it doesn't actually matter what we define u 0  to be.



Then

u t a = 
0,  t a 0; i.e. t a

1,  t a 0; i.e. t a
  

and has graph that is a horizontal translation by a to the right, of the original graph, e.g. for a = 2:

Exercise 1)  Verify the table entries

  
u t a   unit step function   

e a s

s       for turning components on and 
off at t = a .

     f t a  u t a      e a sF s   more complicated on/off



Exercise 2)  Consider the function f t  which is zero for t 4 and with the following graph.  Use 
linearity and the unit step function entry to compute the Laplace transform F s  .  This should remind you 
of a homework problem from the assignment due tomorrow - although you're asked to find the Laplace 
transform of that step function directly from the definition.  In your next week's homework assignment 
you will re-do that problem using unit step functions.  (Of course, you could also check your answer in 
this week's homework with this method.)

t
0 1 2 3 4 5 6 7 8

0

1

2



Exercise 3a)  Explain why the description above leads to the differential equation initial value problem for 
x t

x t x t = .2 cos t 1 u t 10  
x 0 = 0 
x 0 = 0 

3b)  Find x t .  Show that after the parent stops pushing, the child is oscillating with an amplitude of 
exactly  meters (in our linearized model).
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Pictures for the swing:

plot1 plot .1 t sin t , t = 0 ..10 Pi, color = black :
 plot2 plot Pi sin t , t = 10 Pi ..20 Pi, color = black :
 plot3 plot Pi, t = 10 Pi ..20 Pi, color = black, linestyle = 2 :
 plot4 plot Pi, t = 10 Pi ..20 Pi, color = black, linestyle = 2 :
 plot5 plot .1 t, t = 0 ..10 Pi, color = black, linestyle = 2 :
 plot6 plot .1 t, t = 0 ..10 Pi, color = black, linestyle = 2 :
 display plot1, plot2, plot3, plot4, plot5, plot6 , title = `adventures at the swingset` ;

t
2 4 6 8 12 16 20 

3
1
1
3

adventures at the swingset

Alternate approach via Chapter 3:

step 1)   solve
x t x t = .2 cos t

x 0 = 0 
x 0 = 0 

for 0 t 10  .  

step 2)  Then solve
y t y t = 0
y 0 = x 10  

y 0 = x 10  
and set x t = y t 10   for t 10 .



Laplace transform tableLaplace transform table
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f t e s t dt  for s M  
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t c
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Laplace transform tableLaplace transform table

0

t
f  d  F s

s  

t f t  
t2 f t  

tn f t , n  
f t

t  

F s   
F s  

1 n F n s   

s
F  d   

   t cos k t  

1
2 k t sin k t  

1

2 k3 sin k t k t cos k t  

t ea t 

tn e a t, n   

s2 k2

s2 k2 2    

s

s2 k2 2  

1

s2 k2 2  

1

s a 2
n !

s a n 1  

  
0

t
f g t  d   F s G s

  
  f t   with period p      

1

1 e ps
0

p

f t e s t dt



EP 7.6  impulse functions and the  operator.

Consider a force f t  acting on an object for only on  a very short time interval a t a ,  for 
example as when a bat hits a ball.  This impulse p of the force is defined to be the integral

p
a

a
f t  dt 

and it measures the net change in momentum of the object since by Newton's second law
m v t = f t   

a

a
m v t  dt =

a

a
f t  dt  = p   

m v t
t = a

a
= p .

Since the impulse p only depends on the integral of f t , and since the exact form of f is unlikely to be 
known in any case, the easiest model is to replace f with a constant force having the same total impulse, i.e.
to set

f = p d
a,

t  
where d

a,
t  is the unit impulse function given by 

d
a,

t =

0,     t a
1

,   a t a

0,    t a          
  

  .

Notice that 

a

a

d
a,

t  dt =
a

a 1
 dt = 1 .

Here's a graph of d2, .1 t , for example:

t
0 1 2 3 4

0

6
10

Since the unit impulse function is a linear combination of unit step functions, we could solve differential 
equations with impulse functions so-constructed.  As far as Laplace transform goes, it's even easier to take 
the limit as 0 for the Laplace transforms d

a,
t s , and this effectively models impulses on very 

short time scales.  

d
a,

t =
1

u t a u t a  



d
a,

t s =
1 e a s

s
e a s

s
  

= e a s 1 e  s

 s
 .

In Laplace land we can use L'Hopital's rule (in the variable ) to take the limit as 0:

lim
0
 e a s 1 e  s

 s
= e a s lim

0

s e  s

s
= e a s.

The result in time t space is not really a function but we call it the "delta function" t a  anyways, and 
visualize it as a function that is zero everywhere except at t = a, and that it is infinite at t = a in such a way 
that its integral over any open interval containing a equals one.  As explained in EP7.6, the delta "function"
can be thought of in a rigorous way as a linear transformation, not as a function.  It can also be thought of 
as the derivative of the unit step function u t a , and this is consistent with the Laplace table entries for 
derivatives of functions.  In any case, this leads to the very useful Laplace transform table entry

 t a   unit impulse function   e a s       for impulse forcing
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Exercise 4)  Revisit the swing.  In this case the parent is providing an impulse each time the child passes 
through equilibrium position after completing a cycle.

x t x t = .2 t t 2 t 4 t 6 t 8   
x 0 = 0 

x 0 = 0 .

with plots :
plot1 plot .1 t sin t , t = 0 ..10 Pi, color = black :
 plot2 plot Pi sin t , t = 10 Pi ..20 Pi, color = black :
 plot3 plot Pi, t = 10 Pi ..20 Pi, color = black, linestyle = 2 :
 plot4 plot Pi, t = 10 Pi ..20 Pi, color = black, linestyle = 2 :
 plot5 plot .1 t, t = 0 ..10 Pi, color = black, linestyle = 2 :
 plot6 plot .1 t, t = 0 ..10 Pi, color = black, linestyle = 2 :
 display plot1, plot2, plot3, plot4, plot5, plot6 , title = `Wednesday adventures at the swingset` ;

t
2 4 6 8 10 12 14 16 18 20 

3
1
1
3

Wednesday adventures at the swingset

impulse solution: five equal impulses to get same final amplitude of  meters  - Exercise 1:
f t .2 Pi sum Heaviside t k 2 Pi sin t k 2 Pi , k = 0 ..4 :
plot f t , t = 0 ..20 Pi, color = black, title = `lazy parent on Friday` ;

t
2 4 6 8 10 14 20 3

0
3

lazy parent on Friday

Or, an impulse at t = 0 and another one at t = 10  .
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g t .2 Pi 2 sin t 3 Heaviside t 10 Pi sin t 10 Pi :
plot g t , t = 0 ..20 Pi, color = black, title = `very lazy parent` ;

t
2 4 6 8 10 14 20 

3
1
1
3

very lazy parent
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Math 2280-001
Wed Apr 12

Convolutions and solutions to non-homogeneous physical oscillation problems (EP7.6 p. 499-501)  

Consider a mechanical or electrical forced oscillation problem for x t , and the particular solution that 
begins at rest:

a x b x c x = f t  
x 0 = 0 

x 0 = 0 .
Then in Laplace land, this equation is equivalent to

a s2 X s b s X s c X s = F s  
X s a s2 b s c = F s  

X s = F s
1

a s2 b s c
F s W s  .

The inverse Laplace transform w t = 1 W s t  is called the "weight function" of the given 
differential equation.  Notice (check!) that w t  is the solution to the homogeneous DE IVP

a x  cb x  c x = 0
x 0 = 0 
x 0 = 1

Because of the convolution table entry

  
0

t
f g t  d     F s G s

convolution integrals to invert 
Laplace transform products

the solution (for ANY forcing function f t ) is given by

x t =
0

t
f w t  d .

(With non-zero initial conditions there would be homogeneous solution terms as well.   In the case of 
damping these terms would be transient.)  Notice that this says that x t  depends on the values of the 
forcing function f  for the previous times 0 t,  weighted by w t , t t 0.  That the 
non-homogenous solutions can be constructed from the homogeneous ones via this convolution is a 
special case of "Duhamel's Principle", which applies to linear DE's and linear PDE's:

https://en.wikipedia.org/wiki/Duhamel%27s_principle

This idea generalizes to much more complicated mechanical and circuit systems, and is how engineers 
experiment mathematically with how proposed configurations will respond to various input forcing 
functions, once they figure out the weight function for their system.

The mathematical justification for the general convolution table entry is at the end of today's notes.



(1)(1)
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Exercise 2.  Let's play the resonance game and practice convolution integrals, first with an old friend, but 
then with non-sinusoidal forcing functions.  We'll stick with our earlier swing, but consider various 
forcing periodic functions f t .

x t x t = f t  
x 0 = 0 
x 0 = 0 

a)  Find the weight function w t .
b)  Write down the solution formula for x t  as a convolution integral.
c)  Work out the special case of X s  when f t = cos t , and verify that the convolution formula 
reproduces the answer we would've gotten from the table entry

t
2 k

sin k t   
s

s2 k2 2   

0

t
sin cos t  d ;

0

t
cos sin t  d ;  #convolution is commutative

1
2

 sin t  t

1
2

 sin t  t

d)  Then play the resonance game on the following pages with new periodic forcing functions ... 
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We worked out that the solution to our DE IVP will be 

x t =
0

t
sin f t  d

Since the unforced system has a natural angular frequency 0 = 1 , we expect resonance when the forcing 

function has the corresponding period of  T0 =
2 
w0

= 2 .   We will discover that there is the possibility 

for resonance if the period of f is a multiple of T0.  (Also, forcing at the natural period doesn't guarantee 
resonance...it depends what function you force with.)

Example 1)  A square wave forcing function with amplitude 1 and period  2 .  Let's talk about how we 
came up with the formula (which works until t = 11  ) .

with plots :

f1 t 1 2
n = 0

10

1 n Heaviside t n Pi :

 plot1a plot f1 t , t = 0 ..30, color = green :
 display plot1a, title = `square wave forcing at natural period` ;

t
10 20 301

1
square wave forcing at natural period

1)  What's your vote?  Is this square wave going to induce resonance, i.e. a response with linearly growing
amplitude?

x1 t
0

t
sin f1 t  d :

 plot1b plot x1 t , t = 0 ..30, color = black :
 display plot1a, plot1b , title = `resonance response ?` ;

t
10 20 30

10

0

10

resonance response ?
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Example 2)  A triangle wave forcing function, same period

f2 t
0

t
f1 s  ds 1.5 :   # this antiderivative of square wave should be triangle wave

 plot2a plot f2 t , t = 0 ..30, color = green :
 display plot2a, title = `triangle wave forcing at natural period` ;

10 20 30
1
triangle wave forcing at natural period

2)  Resonance?

x2 t
0

t
sin f2 t  d :

 plot2b plot x2 t , t = 0 ..30, color = black :
 display plot2a, plot2b , title = `resonance response ?` ;

t
10 20 30

10
0

10

resonance response ?
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Example 3)  Forcing not at the natural period, e.g. with a square wave having period T = 2 .

f3 t 1 2
n = 0

20

1 n Heaviside t n :

 plot3a plot f3 t , t = 0 ..20, color = green :
 display plot3a, title = `periodic forcing, not at the natural period` ;

t
5 10 15 201

1
periodic forcing, not at the natural period

3)  Resonance?

x3 t
0

t
sin f3 t  d :

 plot3b plot x3 t , t = 0 ..20, color = black :
 display plot3a, plot3b , title = `resonance response ?` ;

t
5 10 15 20

1

0

1
resonance response ?
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Example 4)  Forcing not at the natural period, e.g. with a particular wave having period T = 6  .

f4 t
n = 0

10

Heaviside t 6  n Heaviside t 6 n 1 :

 plot4a plot f4 t , t = 0 ..150, color = green :
 display plot4a, title = sporadic square wave with period 6 ;

t
0 50 100 150

0

1
sporadic square wave with period 6

4)   Resonance?

x4 t
0

t
sin f4 t  d :

 plot4b plot x4 t , t = 0 ..150, color = black :
 display plot4a, plot4b , title = `resonance response ?` ;

t
50 100 150

10

0

10

resonance response ?
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Hey, what happened????  How do we need to modify our thinking if we force a system with something 
which is not sinusoidal, in terms of worrying about resonance?  In the case that this was modeling a swing
(pendulum), how is it getting pushed?

Precise Answer:  It turns out that any periodic function with period P is a (possibly infinite) superposition

of a constant function with cosine and sine functions of periods P,
P
2

,
P
3

,
P
4

,... .  Equivalently, these 

functions in the superposition are 

1, cos  t , sin  t , cos 2  t , sin 2  t , cos 3  t , sin 3  t ,...  with  ω =
2
P

.  This is the 

theory of Fourier series, which you will study in other courses, e.g. Math 3150, Partial Differential 
Equations.  If the given periodic forcing function f t  has non-zero terms in this superposition for which 

n = 0 (the natural angular frequency) (equivalently 
P
n

=
2

0

= T0), there will be resonance; 

otherwise, no resonance.  We could already have understood some of this in Chapter 3, for example

Exercise 3)  The natural period of the following DE is (still) T0 = 2  .  Notice that the period of the first 

forcing function below is T = 6  and that the period of the second one is T = T0 = 2 . Yet, it is the first 
DE whose solutions will exhibit resonance, not the second one.  Explain, using Chapter 5 superposition 
ideas. 
a)  

x t x t = cos t sin
t
3

.

b)
x t x t = cos 2 t 3 sin 3 t .
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Math 2280-001
Fri Apr 14

Chapter 9  Fourier Series and applications to differential equations (and partial differential equations)
9.1-9.2  Fourier series definition and convergence.

The idea of Fourier series is related to the linear algebra concepts of dot product, norm, and projection.  
We'll review this connection after the definition of Fourier series:

Let f : ,  be a piecewise continuous function, or equivalently, extend to f :  as a 
2 periodic function. 
Example one could consider the 2 -periodic extension of f t =  t , initially defined on the t interval 

, , to all of .  Its graph is the so-called "tent function", tent t  

t
3 2 0 2 3 

1
2
3

The Fourier coefficents of a 2  periodic function f are computed via the definitions

a0
1

f t  dt

an
1

f t cos n t  dt, n

bn
1

f t sin n t  dt, n  

And the Fourier series for f is given by

f
a0

2 n = 1
ancos n t

n = 1
bnsin n t .

The idea is that the partial sums of the Fourier series of f should actually converge to f.  The reasons why 
this should be true combine linear algebra ideas related to orthonormal basis vectors and projection, with 
analysis ideas related to convergence.  Let's do an example to illustrate the magic, before discussing (parts 
of) why the convergence actually happens.
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Exercise 1  Consider the even function f t =  t  on the interval t , extended to be the 
2 periodic "tent function" tent t of page 1.  Find the Fourier coefficients a0, an, bn and the Fourier 
series for tent.  The answer is below, along with a graph of partial sum of the Fourier series.

t
3 0 2 3 

1

3

solution:  tent
2

4
n odd

1
n2 cos n t  

f1 t
2

4
j = 0

4
1

2 j 1 2  cos 2 j 1 t :

plot f1 t , t = 10 ..10, color = black ;

t
10 5 0 5 10

1
2
3



(3)(3)
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Using technology to compute Fourier coefficients:
f t t ;

f := t t

a0
1

f t  dt;

 assume n, integer ;  # this will let Maple attempt to evaluate the integrals

 a n
1

f t cos n t  dt :

 b n
1

f t sin n t  dt :

 a n ;
 b n ;

a0 :=

2 1 n~ 1
 n~2

0
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So what's going on?
Recall the ideas of dot product, angle, orthonormal basis and projection onto subspaces, in N, from linear 
algebra:

For x, y N, the dot product x y
k = 1

N

xk yk satisfies for all vectors x, y, z N and scalars s :

a)  x x 0 and = 0 if and only if x = 0
b) x y = y x
c) x y z = x y x z
d) s x y = s x y = x s y

From these four properties one can define the norm or magnitude of a vector by
x = x x

and the distance bewteen two vectors x, y by
dist x, y x y .

One can check with algebra that the Cauchy-Schwarz inequality holds:
x y x y  ,

with equality if and only if x, y are scalar multiples of each other.  One consequence of the Cauchy-
Schwarz inequality is the triangle inequality

x y x y ,

with equality if and only if x, y are non-negative scalar multiples of each other.  Equivalently, in terms of 
Euclidean distance,

dist x, z dist x, y dist y, z  .

Another consequence of the Cauchy-Schwarz inequality is that one can define the angle  between x, y via

cos
x y
x y

 ,

for 0 , because 1
x y
x y

1 holds so that  exists. In particular two vectors x, y are 

perpendicular, or orthogonal if and only if
 x y = 0.

If one has a n dimensional subspace W N an orthonormal basis u1, u2, ... un  for W is a 
collection of unit vectors (normalized to length 1), which are also mutually orthogonal.  (One can find such
bases via the Gram-Schmidt algorithm.)  For such an ortho-normal basis the nearest point projection of a 
vector x N onto W is given by

projW x = x u1 u1 x u2 u2  ... x un un =
k = 1

n

x uk uk  .

For any x (already) in W, projW x = x.
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The entire algebraic/geometric development on the previous page just depended on the four algebraic 
properties a,b,c,d for the dot product. So it can be generalized:

Definition  Let V is any real-scalar vector space.  we call V  an inner product space if there is an inner 
product f, g  
for which the inner product satisfies f, g, h V and scalars s :
a)  f, f 0. f, f = 0.
b) f, g = g, f .
c) f, g h = f, g f, h  
d) s f , g = s f, g = f, s g  .

In this case one can define f = f, f , dist f, g = f g ; prove the Cauchy-Schwarz inequality 
and the triangle inequalities; define angles between vectors, and in particular, orthogonality between 
vectors;  find ortho-normal bases  u1, u2, ... un for finite-dimensional subspaces W, and prove that for 
any f V the nearest element in W to f is given by

projW f = f, u1 u1 f, u2 u2  ... f, un un =
k = 1

n

f, uk uk .

Theorem Let V = f :  s.t. f is piecewise continuous and 2 periodic  . Define

f, g
1

f t g t  dt.

1)  Then V,  ,  is an inner product space.

2)  Let VN span
1

2
, cos t , cos 2 t , ..., cos N t , sin t , sin 2 t , ... sin N t  . Then the 

2 N 1 functions listed in this collection are an orthonormal basis for the 2 N 1  dimensional 
subspace VN.  In particular, for any f V the nearest function in VN to f is given by

projV
N
f = f,

1

2

1

2
  

n = 1

N

f, cos nt cos nt
n = 1

N

f, sin nt sin nt  

=
a0

2 n = 1

N

ancos nt
n = 1

N

bnsin nt

where a0, an, bn are the Fourier coefficients defined on page 1.
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Exercise 2)  Check that 
1

2
, cos t , cos 2 t , ..., cos N t , sin t , sin 2 t , ... sin N t  are 

orthonormal with respect to the inner product

f, g
1

f t g t  dt

  Hint:
cos m k t = cos m t cos k t sin m t sin k t
sin m k t = sin m t cos k t cos m t sin k t

so

cos m t cos k t =
1
2

cos m k  t cos m k t    (even if m = k  

sin m t sin k t =
1
2

cos m k  t cos m k t    (even if m = k

cos m t sin k t =
1
2

sin m k  t sin m k t  
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Exercise 3)  Consider the 2 periodic odd function saw t  define by extending 
f t = t,   t

as a 2 periodic function.

t
3 2 2 3 

3
1
1
3

sawtooth function

Find the Fourier series for saw t .  Hint:  you noticed that for the even tent function in Exercise 1 the sine 
Fourier coefficients were all zero.  Which ones will be zero for any odd function?  Why?

solution:  saw 2
n = 1

1 n 1

n
sin n t   

f2 t 2
n = 1

10
1 n 1

n
sin n t :

plot f2 t , t = 10 ..10, color = black ;

t
10 5 5 102

3
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Convergence Theorems  (These require some careful mathematical analysis to prove - they are often 
discussed in Math 5210, for example.)

Theorem 1  Let f :  be 2 periodic and piecewise continuous.  Let

fN = projV
N
f =

a0

2 n = 1

N

ancos nt
n = 1

N

bnsin nt

be the Fourier series truncated at N.  Then

limn f fN = limn
1

f t fN t 2 dt

1
2

= 0.

In other words, the distance between fN and f converges to zero, where we are using the distance function 
that we get from the inner product,

dist f, g = f g = f g, f g =
1

f t g t 2 dt

1
2

.

Theorem 2  If f is as in Theorem 1, and is (also) piecewise differentiable with at most jump discontinuities, 
then 
 (i)  for any t0 such that f is differentiable at t0  

 lim
N

fN t0 = f t0   (pointwise convergence).
 (ii)  for any t0 where f is not differentiable (but is either continuous or has a jump 
discontinuity), then

 lim
N

fN t0 =
1
2

 f t0 f t0
where

f t0 = lim
t t

0

f t ,     f t0 = lim
t t

0
f t

Examples:  
1)  The truncated Fourier series for the tent function, tentN t  converge to tent t  for all t.  In fact, it can be

shown that the convergence is uniform, i.e. 0 N s.t. n N tent t tentn t  for all t at 
once.
2)  The truncated Fourier series for the sawtooth function, sawN t  converge to saw t  for all 

t 2 k , k  (i.e. everywhere except at the jump points).  At these jump points the Fourier series 
converges to the average of the left and right hand limits of saw, which is 0.  (In fact, each partial sum 
evaluates to 0 at those points.)  The convergence at the other t values is pointwise, but not uniform, as the 
convergence takes longer nearer the jump points.)
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Exercise 4)  We can derive "magic" summation formulas using Fourier series.  (See your homework for 
some more.)  From Theorem 2 we know that the Fourier series for tent t  converges for all t.  In particular

0 = tent 0 =
2

4
n odd

1
n2 cos n 0 .

4a)  Deduce

1
1

1
32

1
52  ... =

n odd

1
n2 =

2

8
.

4b) Verify and use

n = 1

1
n2 =

n odd

1
n2 n even

1
n2  

=
n odd

1
n2

1
4 n = 1

1
n2

to show

n = 1

1
n2 =

2

6
.
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Differentiating Fourier Series:

Theorem 3  Let f be 2 periodic, piecewise differentiable and continuous, and with f  piecewise 
continuous.  Let f have Fourier series

f
a0

2 n = 1
ancos n t

n = 1
bnsin n t .

Then f  has the Fourier series you'd expect by differentiating term by term:

f
n = 1

n ansin n t
n = 1

n bncos n t

proof:  Let f  have Fourier series

f
A0

2 n = 1
Ancos n t

n = 1
Bnsin n t .

Then 

An =
1

f t cos n t  dt, n .

Integrate by parts with u = cos n t , dv = f t dt, du = n sin n t dt, v = f t :

1
f t cos n t  dt =

1
f t n sin nt

1
f t n sin n t  dt 

= 0
n

f t sin n t  dt = n bn.

Similarly, A0 = 0, Bn = n an.

Remark:  This is analogous to what happened with Laplace transform.  In that case, the transform of the 
derivative multiplied the transform of the original function by s  (and there were correction terms for the 
initial values).  In this case the tranformed variables are the an, bn  which depend on n.  And the Fourier 
series "transform" of the derivative of a function multiplies these coefficients by n (and permutes them).
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Exercise 5a  Use the differentiation theorem and the Fourier series for tent t  to find the Fourier series for 
the square wave, square t , which is the 2  periodic extension of 

f t =
1 t 0

1 0 t
  

t
3 2 2 3 1

1
square(t)

(You will find the series directly from the definition in your homework.)
5b)  Deduce the magic formula

1
1
3

1
5

1
7

...=
k = 0

1 k

2 k 1
=

4
 .

solution:  square
4

n odd

1
n

sin n t   

f3 t
4

n = 0

10
1

2  n 1
sin 2  n 1 t :

plot f3 t , t = 10 ..10, color = black ;

t
10 5 5 10

1

1

Could you check the Fourier coefficients with technology?
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