Week 6 Feb 13-17, 3.4-3.5, Exam 1 on Friday

Mon Feb 13 Use last Friday's notes to study the unforced mass-spring configuration, section 3.4

Wed Feb 15 Experiments and first midterm review.

Exam 1 is this Friday February 17, from 8:05-9:25 a.m.] 8:0 - 9:30, if you want.

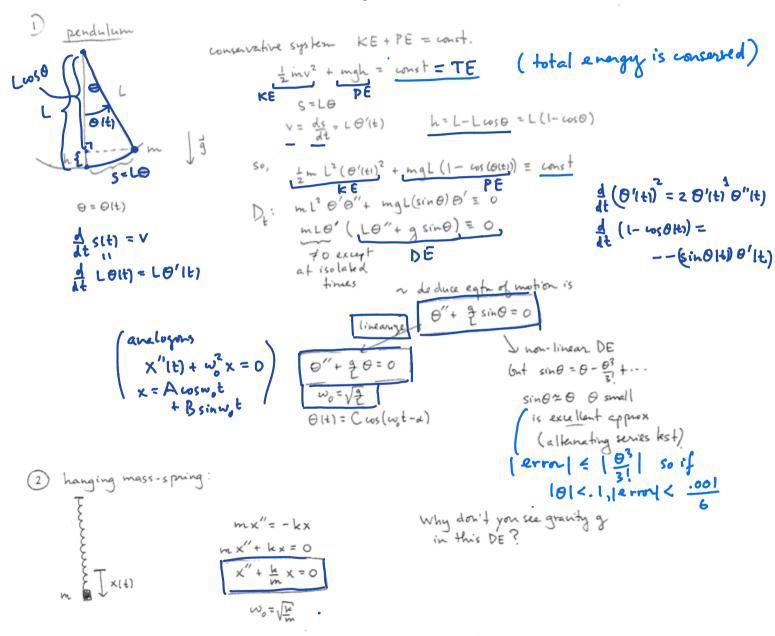
I've posked my last two Math 2290 middleng

This exam will cover textbook material from 1.1-1.5, 2.1-2.4, 3.1-3.4. The exam is closed book and closed note. You may use a scientific (but not a graphing) calculator, although symbolic answers are accepted for all problems, so no calculator is really needed.

I recommend trying to study by organizing the conceptual and computational framework of the course so far. Only then, test yourself by making sure you can explain the concepts and do typical problems which illustrate them. The class notes and text should have explanations for the concepts, along with worked examples. Old homework assignments and quizzes are also a good source of problems.

I will have posted the first exam and solutions, from the last time I taught Math 2280. That exam should give you a feel for how I structure exams and address course topics.

Is there anything from the homework that you'd like to discuss?


3.4.4 :
$$h = .25 \text{ kg}$$
, $F = 9 \text{ N}$

stretches spring .25 m

 $9 = k (.25)$
 $36 = k$
 $x(0) = 1$
 $x(0) = 4$
 $x'(0) = -5$
 $x'' + k = 0$
 $x'' + k = 0$
 $x'' + k = 0$
 $x'' + 144 = 0$
 x

Small oscillation pendulum motion and vertical mass-spring motion are governed by exactly the "same" differential equation that models the motion of the mass in a horizontal mass-spring configuration. The nicest derivation for the pendulum depends on conservation of energy, as indicated below. Conservation of energy is an important tool in deriving differential equations, in a number of different contexts. Today we will test both the pendulum model and the mass-spring model with actual experiments (in the

undamped cases), to see if the predicted periods $T = \frac{2 \pi}{\omega_0}$ correspond to experimental reality.

Pendulum: measurements and prediction (we'll check these numbers).

> restart:

Digits := 4:

>
$$L := 1.526$$
;
 $g := 9.806$;
 $\omega := \sqrt{\frac{g}{L}}$; # radians per second
 $f := evalf(\omega/(2 \cdot Pi))$; # cycles per second
 $T := 1/f$; # seconds per cycle

$$L := 1.526$$
 $g := 9.806$
 $\omega := 2.534945798$
 $f := 0.4034491542$
 $T := 2.478627082$
 $Cycle$

Experiment:

2.48 prediction

Mass-spring:

compute Hooke's constant:

$$>$$
 98.7 $-$ 83.4; #displacement from extra 50g

>
$$k := \frac{.05 \cdot 9.806}{.15 \% \%}$$
; # solve $k \cdot x = m \cdot g$ for k .
$$k := \frac{3.204575163}{3.103}$$
(3)

$$m := .1; \# mass for experiment is 100g$$

$$\omega := \sqrt{\frac{k}{m}}$$
; # predicted angular frequency $\sqrt{\frac{3.10^{\circ}}{11}}$

$$f := evalf\left(\frac{\omega}{2 \cdot Pi}\right); \# predicted frequency$$

$$T := \frac{1}{f}$$
; # predicted period

$$m := 0.1$$
 $\omega := 5.660896716$
 $f := 0.9009596945$
 $T := 1.109927565$
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945
 0.9009596945

Experiment:

(1)

We neglected the KE_{spring} , which is small but could be adding intertia to the system and slowing down the oscillations. We can account for this:

Improved mass-spring model

Normalize TE = KE + PE = 0 for mass hanging in equilibrium position, at rest. Then for system in motion,

$$KE + PE = KE_{mass} + KE_{spring} + PE_{work}.$$

$$PE_{work} = \int_{0}^{x} k s \, ds = \frac{1}{2} k x^{2}, \quad KE_{mass} = \frac{1}{2} m \left(x'(t)\right)^{2}, \quad KE_{spring} = ????$$

How to model KE_{spring} ? Spring is at rest at top (where it's attached to bar), moving with velocity x'(t) at bottom (where it's attached to mass). Assume it's moving with velocity $\mu \, x'(t)$ at location which is fraction μ of the way from the top to the mass. Then we can compute KE_{spring} as an integral with respect to μ , as the fraction varies $0 \le \mu \le 1$:

$$KE_{spring} = \int_{0}^{1} \frac{1}{2} (\mu x'(t))^{2} (m_{spring} d\mu)$$

$$= \frac{1}{2} m_{spring} (x'(t))^{2} \int_{0}^{1} \mu^{2} d\mu = \frac{1}{6} m_{spring} (x'(t))^{2}.$$

Thus

$$TE = \frac{1}{2} \left(m + \frac{1}{3} m_{spring} \right) (x'(t))^2 + \frac{1}{2} k x^2 = \frac{1}{2} M(x'(t))^2 + \frac{1}{2} k x^2,$$

where

$$M = m + \frac{1}{3} m_{spring}$$

 $D_{t}(TE) = 0 \Rightarrow$

$$Mx'(t)x''(t) + kx(t)x'(t) = 0$$
.
 $x'(t)(Mx'' + kx) = 0$.

Since x'(t) = 0 only at isolated t-values, we deduce that the corrected equation of motion is

$$(Mx'' + kx) = 0$$

with

$$\omega_0 = \sqrt{\frac{k}{M}} = \sqrt{\frac{k}{m + \frac{1}{3} m_{spring}}}.$$

Does this lead to a better comparison between model and experiment?

>
$$ms := .0103$$
; # spring has mass 10.3 g
$$M := m + \frac{1}{3} \cdot ms$$
; # "effective mass"

ms := 0.0103 M := 0.1034333333 $f := evalf \left(\frac{\omega}{2 \cdot \text{Pi}}\right); \# \text{predicted angular frequency}$ $T := \frac{1}{f}; \# \text{predicted period}$ $\omega := 5.566150833$ f := 0.8858804190 T := 1.128820525 $x = \sqrt{\text{cytle}}$ $x = \sqrt{\text{cytle}}$

Review Questions

1a) What is a differential equation? What is its order? What is an initial value problem, for a first or second order (or higher order) DE?
an equation the highest order for a 1st order
involving a derivative of DE, also specify function y(x) and some of the D.E. (for 2nd oder DE also
and some of the D.E. (for 2nd order DE also
1b) How do you check whether a function solves a differential equation? An initial value problem?
makes the DE the function $y'(x_0)$
a true identity has the correct
Ic) What is the connection between a first order differential equation and a slope field for that differential
equation? The connection between an IVP and the slope field? Here $x = x + y$
has slone ((x,y) on the graph equal to the value f(x,y)
the graph y: y(x) of a solution y(x) to y'(x)= f(x,y) has slope (0 (x,y) on the graph equal to the value f(x,y) of the slope function there
If y(x) solves IVP with y(x) = y. Hen the graph pasks 1d) Do you expect solutions to IVP's to exist, at least for values of the input variable close to its initial value? Why? Do you expect uniqueness? What does the existence-uniqueness theorem say? What can
value: Why: Do you expect uniqueness: What does the existence-uniqueness theorem say: What can
cause solutions to not exist beyond a certain input variable value? We expect srling to the IVP $\begin{cases} y'(x) = f(x,y) \\ y(a) = b \end{cases}$
to exist and be unique. If you can find a coordinate rectangle R, with pt. (a,b) in its interior, so that f(x,y) 1e) What is Euler's numerical method for approximating solutions to first order IVP's, and how does it, relate to slope fields? 15 continuous in R, then there is a solution to N.P. If 2f is
1e) What is Euler's numerical method for approximating solutions to first order IVP's, and how does it
13 of 30 of 10 (V). 11 = 17
Xi+1 = Xi + DX also continuous the solution is
$\gamma_{i+1} = \gamma_i + f(x_i, y_i) \Delta x$ unique as long as its graph lies within R
If) Can you recognize the first order differential equations for which we've studied solution algorithms, even if the DE is not automatically given to you pre-set up for that algorithm? Do you know the
algorithms for solving these particular first order DE's?
• linear 91.5 $y' + P(x)y = Q(x)$ • separable 91.4 $\frac{dy}{dx} = \frac{f(x)}{2}$
· sepanable 51.4 dy = 3(4) · y'=f(x) b1.2
be prepared to DF is libear or separable (and to say
be prepared to recognize whether a DE is linear or separable (and to say what the standard form is, for linear/separable, know how to use the algorithms for finding solutions in each case
know how to use the algorithms for thought south to

a number line containing the equilibrium points, and larrows 2a) What's an autonomous differential equation? What's an equilibrium solution to an autonomous link ins are differential equation? What is a phase diagram for an autonomous first order DE, and how do you'ne / dec. construct one? How does a phase diagram help you understand stability questions for equilibria? What does the phase diagram for an autonomous first order DE have to 救 with the slope field? constant solution y(x1=C for y(x) = f(y) (for x(4): x(14) = f(x) for year= c get rate of change of solutions only depends on solution value, not on independent variable value. Note: autonomons => separable Dhase diagram is 1-d version that contains essential inc/dec inf from solution asymptotically stable 2b) Can you convert a description of paynamical system therms of rates of change, or a geometric configuration in terms of slopes, into a differential equation? What are the models we've studied carefully in Chapters 1-2? What sorts of DE's and IVP's arise? Can you solve these basic application DE's, once you've set up the model as a differential equation and/or IVP? o input - ontput - mixing ('tanks")

· improved velocity (add drag)

· improved propulation

improved relocity (add drag)

improved population

Newton's law of earling

exp growth/decay.

almost always, live asked (at least)

two of these three applications.

see old exams for sample questions

Chapter 3

3a) For functions
$$y(x)$$
, why is

$$L(y) := y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y$$

called linear?

3b) For linear operators L, why is the general solution to

$$L(y) = f$$

given by $y = y_n + y_{H^p}$ where y_n is any single particular solution, and y_H is the general solution to the

homogeneous problem?

nogeneous problem? $L(y_{R}) = f$ $L(y_{H}) = 0$ $\Rightarrow L(y_{R} + y_{H}) = L(y_{R}) + L(y_{H}) = f + 0$ = f $L(y_{R} + y_{H}) = L(y_{R}) + L(y_{H}) = f + 0$ = f $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int$

3c) For the differential operator L above, what is the dimension of the solution space to the homogeneous DE DE

$$L(y) = 0?$$

What does this have to do with the existence-uniqueness theorem?

Has unique solution. So any n solutions y, y2, ... yn such that their initial value vectors at x are a basis for IR", will be collections of find basis for the collections of find basis.

3d) Can you check whether collections of functions are linearly independent?

& limiting anys (2) If functions have different growth rates as x->00

= 2,4"+54"+64"=0

(or x - 3 - 00) you can show independence

 $\begin{bmatrix} V & \int_{C_1}^{C_1} c_1 \\ c_2 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

3 By plugging different x-values into the dependency egth, you may be able to cleduce all cj=0

1) If Wronskian matrix at any xo is inventible, deduce yings, -- yn are linemly independent

(or combine 1,2,3)