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Name.........................................................................................

I.D. number................................................................................

Math 2280-001   Spring 2015
PRACTICE FINAL EXAM

(modified from Math 2280 final exam, April 29, 2011)

     This exam is closed-book and closed-note.  You may  use a scientific calculator, but not one which is 
capable of graphing or of solving differential or linear algebra equations.  Laplace Transform and integral 
tables are included with this exam.  In order to receive full or partial credit on any problem, you must
show all of your work and justify your conclusions.  This exam counts for 30% of your course grade.  
It has been written so that there are 150 points possible,  and the point values for each problem are 
indicated in the right-hand margin.  Good Luck!

problem        score       possible

1           _______        20

2           _______        20

3           _______        30

4           _______        15

5           _______        25

6           _______        15

7           _______        15

8           _______        10

total        _______       150
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1)  Find the matrix exponentials for the following two matrices. Work one of problems using the power 
series definition, and the other one using the fundamental matrix solution approach (your choice).  As it 
turns out, both methods are reasonable for both problems.

1a)

A =
0 1

1 0
(10 points)

solution via FM:  et A = F t F 0 K1:  For F t the columns will form a basis for the solution space to
x#= A x 

A K l I =
Kl 1

1 Kl
= l

2
K 1 = lK 1 lC 1 .

E
l = 1

:  

K1 1
1 K1

0
0

0 v=
1
1

 eigenvector

E
l =K1

:  

1 1
1 1

0
0

0 v=
1
K1

 eigenvector

0 xH t = c1et 1
1

C c2eKt 1
K1

  

0F t =
et eKt

et KeKt
  is an FM

0 et A = F t F 0 K1 =
et eKt

et KeKt

1 1
1 K1

K1

  

=
et eKt

et KeKt
1
K2

K1 K1
K1 1

=
1
2

et eKt

et KeKt

1 1
1 K1

=
1
2

et C eKt etKeKt

etKeKt et C eKt
  .

If you try power series you will get entries which are the power series for cosh t , sinh t .  (We did not 
review those in this 2280 class.)  In fact, an equivalent way to write et A in this case is

et A =
cosh t sinh t
sinh t cosh t

.

1b)

B =
0 1

K1 0
(10 points)

with power series:

et B = I C t B C t2
2! B2 C...C tn

n ! Bn C ...
Powers of B:

B =
0 1
K1 0

,  B2 =
0 1
K1 0

0 1
K1 0

=
K1 0
0 K1

= KI,  

B3 = B2B =KI B =KB, B4 = B2B2 = KI KI = I B5 = B4B = B ...
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and the pattern repeats cyclicly, every four powers.  Thus

et B =
1 0
0 1

C t
0 1
K1 0

C
t2
2!

K1 0
0 K1

C
t3
3!

0 K1
1 0

C
t4
4!

1 0
0 1

C... 

=
1 K

t2
2! C

t4
4! C... t K t3

3! C
t5
5! K...

Kt C t3
3! K

t5
5! C... 1 K

t2
2! C

t4
4! C...

=
cos t sin t
Ksin t cos t

.

solution via FM:  et A = F t F 0 K1:  For F t the columns will form a basis for the solution space to
x#= A x 

A K l I =
Kl 1

K1 Kl
= l

2
C 1 = lK i lC i .

E
l = i

:  

Ki 1
K1 Ki

0
0

0 v=
1
i

 eigenvector

complex solution

z t = ei t 1
i

= cos t C i sin t
1
i

=
cos t
Ksin t

C i
sin t
cos t

.

The real and complex parts are each real solutions, so a FM is given by

F t =
cos t sin t
Ksin t cos t

.

Since F 0 = I, this is et A

et A =
cos t sin t
Ksin t cos t

  .

2a)  Use Laplace transform techniques to find the general solution to the undamped forced oscillator 
equation with resonance:

x## t Cw0
2
 x t = F0 sin w0 t .

(10 points)

solution:  The solution x t  makes both sides of the DE equal, so their Laplace transforms are too.

s2X s K s x0 K v0 Cw0
2
X s = F0

 w0

s2 Cw0
2  

X s s2 Cw0
2

= F0

 w0

s2 Cw0
2 C s x0 C v0

X s = F0

 w0

s2 Cw0
2 2 C x0

s

s2 Cw0
2 C v0

1

s2 Cw0
2  

x t = F0w0
1

2 w0
3 sin w0t Kw0t cos w0t C x0cos w0t C

v0

w0
sin w0t

= F0
1

2 w0
2 sin w0t Kw0t cos w0t C x0cos w0t C

v0

w0
sin w0t .
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2b)  Use Laplace transform to find the general solution to the non-resonant undamped forced oscillator 
equation

x## t Cw0
2
 x t = F0 sin w t

wsw0

(10 points)
solution:

s2X s K s x0 K v0 Cw0
2
X s = F0

 w

s2 Cw
2  

X s s2 Cw0
2

= F0

 w

s2 Cw
2 C s x0 C v0

X s = F0w
 1

s2 Cw0
2

s2 Cw 
2

C x0
s

s2 Cw0
2 C v0

1

s2 Cw0
2  

X s = F0w
1

w
2
Kw0

2
1

s2 Cw0
2 K

1

s2 Cw
2 C x0

s

s2 Cw0
2 C v0

1

s2 Cw0
2  

x t = F0w
1

w
2
Kw0

2
1
w0

sin w0t K
1
w

sin w t C x0cos w0t C
v0

w0
sin w0t .

3)  Consider the following three-tank configuration.  Let tank i have volume Vi t and solute amount 
xi t at time t.  Well-mixed liquid flows between tanks one and two, with rates r1, r2, and also between 
tanks two and three, with rates r3, r4 , as indicated.

3a)  What is the system of  6 first order differential equations governing the volumes  V1 t ,  V2 t , V3 t  
and solute amounts x1 t ,  x2 t , x3 t ?  (Hint: Although most of our recent tanks have had constant 
volume, we've also discussed  how to figure out how fast volume is changing in input/output models.

(6 points)
V1# t = r2 K r1

V2# t = r1 C r4 K r2 K r3
V3# t = r3 K r4

x1# t =Kr1

x1
V1

C r2

x2
V2

x2# t = r1

x1
V1

K r2 C r3

x2
V2

C r4

x3
V3

 

x3# t = r3

x2
V2

K r4

x3
V3

 .

3b)  Suppose that all four rates are 100 gallons/hour, so that the volumes in each tank remain constant.  
Suppose that these volumes are each 100 gallons.  Show that in this case, the differential equations in (2a)
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> > 

(1)(1)

> > 

for the solute amounts reduce to the system
x1# t

x2# t

x3# t

=

K1 1 0
1 K2 1
0 1 K1

 

x1

x2

x3

(4 points)

solution:  In this case, each 
ri

Vi
 has numerical value 

100
100

= 1 so the differential equations for the xj 

simplify to

x1# t =Kr1

x1
V1

C r2

x2
V2

=Kx1 C x2

x2# t = r1

x1
V1

K r2 C r3

x2
V2

C r4

x3
V3

= x1 K 2 x2 C x3  

x3# t = r3

x2
V2

K r4

x3
V3

= x2 K x3

which can be rewritten in the matrix vector form displayed above.

3c)  Maple to the rescue!  Maple says that

with LinearAlgebra :
A dMatrix 3, 3, K1, 1, 0, 1,K2, 1, 0, 1,K1 ;
 Eigenvectors A ;

A :=

K1 1 0
1 K2 1
0 1 K1

0
K1
K3

,

1 K1 1
1 0 K2
1 1 1

Use this information to write the general solution to the system in (3b).
(5 points)

solution:  The eigenvalues are in the first column of output, and the corresponding eigenvectors are in the 
columns of the matrix.  Each eigenpair l, v  yields a solution el tv so the general solution to x# t = A x 
is

x1 t

x2 t

x3 t

= c1

1
1
1

C c2eKt
K1
0
1

C c3eK3 t
1
K2
1

.

3d)  Solve the initial value problem for the tank problem in (3b), assuming there are initially 10 pounds of 
solute in tank 1, 20 pounds in tank 2, and none in tank 3.  

(10 points)

Using the solution above, at t = 0:
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10
20
0

= c1

1
1
1

C c2

K1
0
1

C c3

1
K2
1

1 K1 1
1 0 K2
1 1 1

10
20
0

KR1 C R2/R2, KR1 C R3/R3:

1 K1 1
0 1 K3
0 2 0

10
10
K10

.

K2 R2 C R3/R3 

1 K1 1
0 1 K3
0 0 6

10
10
K30

.

R3
6 /R3 

1 K1 1
0 1 K3
0 0 1

10
10
K5

.

3 R3 C R2/R2, KR3 C R1/R1 

1 K1 0
0 1 0
0 0 1

15
K5
K5

.

R2 C R1/R1 

1 0 0
0 1 0
0 0 1

10
K5
K5

.

so c1 = 10, c2 =K5, c3 =K5 and

x1 t

x2 t

x3 t

= 10
1
1
1

CK5eKt
K1
0
1

CK5eK3 t
1
K2
1

.

3e)  What is the limiting amount of salt in each tank, as t approaches infinity?  (Hint: You can deduce this 
answer, no matter whether you actually solved 4d, but this gives a way of partially checking your work 
there.)

(5 points)
Since there are 30 pounds total of salt and since the tanks each have the same volume, as the concentrations
converge to their final uniform concentration, the salt amounts will converge to 10 pounds per tank.  This 
is also clear from the solution formula, as the second two terms decay exponentially to zero.

4)  Although we usually use a mass-spring configuration to give context for studying second order 
differential equations, the rigid-rod pendulum also effectively exhibits several key ideas from this course.  
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Recall that in the undamped version of this configuration, we let the pendulum rod length be L, assume the
rod is massless, and that there is a mass m attached at the end on which the vertical graviational force 
acts with force m$g.  This mass will swing in a circular arc of signed arclength s = L$q from the vertical, 
where q is the angle in radians from vertical.  The configuration is indicated below.

4a) Use the fact that the undamped system is conservative, to derive the differential equation for q t ,

q## t  C 
g
L
$sin q t  = 0.

(10 points)
Hint:  Begin by express the TE=KE+PE in terms of the function q t  and its derivatives.  Then compute 
TE# t  and set it equal to zero.

TE = KECPE =
1
2

m v2 C mgh.

Measure the arclength s from the bottom to the mass location, and it's given by s = L q.  The scalar velocity
is v t = s# t = Lq# t .  Measure height from the bottom and it is given by h = L KL cos q .  Thus

TE t =
1
2

m Lq# t 2 Cm g L KL cos q t .

Total energy constant is equivalent to TE# t h 0, i.e.

0 h
1
2

mL22 q# t q## t CmgL sin q t q# t  

0 h mLq# t L q## t C g sin q t .
Since q# t  can only be zero at isolated times, it must be that

0 h L q## t C g sin q t
which is the same as the claimed DE, if we divide both sides by L.

4b)  Explain precisely how the second order differential equation in (5a) is related to the first order 
system of differential equations

x' t

y' t
=

y

K
g sin x

L
(5 points)
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solution:  Let q t  solve

q## t  C 
g
L
$sin q t  = 0.

Define x t d q t , y t = q# t .  Then
x# t = q# t = y

y# t  = q## t =K
g
L

sin q t =K
g
L

sin x t

which is the displayed system.  (Conversely, if x t , y t T solve the system, then defining q t d x t  
yields a solution to the second order DE for q t .)
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5)  Consider the following 3-mass, 2-spring zero-drag "train"configuration below.  At rest the cars are 
separated by certain distances and the springs are neither pulling nor pushing.  From that equilibrium 
configuration, the train is put pushed into motion along a track, and the displacements from equilbrium 
are measured by x1 t , x2 t , x3 t  as indicated.  

5a) Use Newton's law and the Hooke's law (linearization), to derive the system of differential equations 
for x1 t , x2 t , x3 t .

(8 points)
m1x1 ## t = k1 x2 K x1  

m2x2 ## t =Kk1 x2 K x1 C k2 x3 K x2
m3x3 ## t =Kk2 x3 K x2  .

5b)  Show that in case units are chosen so that the numerical values of all the masses are the same as the 
numerical values of the spring, i.e. m1 = m2 = m3 = k1 = k2 = k3 then the system above reduces to

x1## t

x2## t

x3## t

=
K1 1 0

1 K2 1
0 1 K1

 

x1

x2

x3

(4 points)

In this case we may divide each of the DE's in 5a by the corresponding mass, and replace each 
kj

mj
 by 1.  

This yields
x1 ## t = x2 K x1 =Kx1 C x2 

x2 ## t =K x2 K x1 C x3 K x2 = x1 K 2 x2 C x3
x3 ## t =K x3 K x2 = x2 K x3

which is equivalent to the matrix vector system that is displayed.
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> > 
> > 

(2)(2)

5c)  Exhibit the general solution for the system in 5b.  Note that you've already seen this matrix in problem
3:

with LinearAlgebra :
A dMatrix 3, 3, K1, 1, 0, 1,K2, 1, 0, 1,K1 ;
 Eigenvectors A ;

A :=

K1 1 0
1 K2 1
0 1 K1

0
K1
K3

,

1 K1 1
1 0 K2
1 1 1

(8 points)
solution:  Recall (and you should be able to explain why) that if l, v  is an eigenpair for the matrix A,  

with l ! 0, then for w = Kl  we get solutions cos w t v, sin w t v.  If l = 0 we get solutions v, t v .  
So,

x1 t

x2 t

x3 t

= c1 C c2 t
1
1
1

C c3cos t C c4sin t
K1
0
1

C c5cos 3 t C c6sin 3 t
1
K2
1

5d)  Describe the general motion of the train as a superposition of three fundamental modes.
(5 points)

In the first mode, 

c1 C c2 t

1
1
1

The train is moving without oscillation, having started at c1 from the chosen origin, and with velocity c2.
In the second mode,

c3cos t C c4sin t

K1
0
1

the first and third cars are oscillating out of phase and with equal amplitudes, while the second car remains 
stationary.
In the third mode

c5cos 3 t C c6sin 3 t

1
K2
1

the cars are oscillating the most rapidly, with the first and third cars in phase with equal amplitude, and the 
middle car out of phase, with twice the amplitude of the outer two cars.
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6a) We consider a 2 p-periodic saw-tooth function, given on the interval (Kp , p ) by f t = t , and equal 
to zero at every integer multiple of p.
Here's a graph of a piece of this function:

t
K8 K6 K4 K2 2 4 6 8

K3
K1

1
3

Derive the Fourier series for f t ,

f t  =  2 >
n = 1

N
K1 n C 1 sin n t

n
 .

(10 points)
solution:  Because f t  is an odd function, its Fourier cosine coefficients are all zero.

f w
a0

2
C>

n = 1

N

ancos n
 p
L

t C>
n = 1

N

bnsin n
p
L

t = >
n = 1

N

bnsin n
p
L

t

with

bn d f, sin n
p
L

 t =
1
p

Kp

p

f t sin n t  dt =
2
p

0

p

t sin n t  dt .

(The last step holds because the integrand is odd*odd=even function.)  Integrate by parts, letting 

u = t, du = dt, dv = sin n t , v =K
1
n

cos n t

2
p

0

p

t sin n t  dt =
2
p

K
t
n

cos n t
0

p
=

0

p

K
1
n

cos n t  dt

=
2
p

K
p
n

cos np C
1
n2 sin n t

0

p

=K
2
n

K1 n K 0 =
2
n

K1 n C 1.

Setting bn =
2
n

K1 n C 1, a0 = 0, an = 0 yields the displayed Fourier series

f t  =  2 >
n = 1

N
K1 n C 1 sin n t

n
.

6b)  Use the Fourier series above to explain the identity
p
4

 = 1K
1
3
C

1
5
K

1
7
C

1
9
K....

(5 points)

solution  Since f t  is differentiable at t =
p
2

 the Fourier series converges to f
p
2

=
p
2

 there, i.e.
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f
p
2

 =
p
2

=  2 >
n = 1

N K1 n C 1 sin
n p
2

n
.

Since sin
np
2

= 0 for n even, sin
np
2

=C 1 for n = 1C 4 k, k 2 ;, sin
np
2

=K1 for 

n = 3C 4 k, k 2 ; , and since K1 n C 1 = 1 for n odd, we get
p
2

= 2 1K
1
3
C

1
5
K ... .

Divide both sides by 2  to get the displayed identity.

7)  Consider the saw-tooth function f t  from problem 6, and the forced oscillation problem

x## t C 9$x t = f t .

7a) Discuss whether or not resonance occurs.  
(5 points)

The natural angular frequency is w0 = 3.  Since the Fourier expansion of f t  has a sin 3 t  term, there 
will be resonance.

7b)  Find a particular solution for this forced oscillation problem.  Hint: Use the Fourier series for f t  
given in problem 6.  You may make use of the particular solutions table on the next page

(10 points)
We use (infinite) superposition to find a particular solution.

x## t C 9$x t = 2 >
n = 1

N
K1 n C 1 sin n t

n
.

For n s 3 the forced oscillation problem

x## t C 9$x t =
2
n

K1 n C 1 sin n t

has particular solution

xP t =
2
n

K1 n C 1 
1

9K n2 sin nt .

For n = 3 the forced oscillation problem

x## t C 9$x t =
2
3

sin 3 t

has a particular solution

xP t =
2
3

K
t
6

 cos 3 t =K
1
9

t cos 3 t  .

Thus for

x## t C 9$x t = 2 >
n = 1

N
K1 n C 1 sin n t

n
we have a particular solution

xP t =K
1
9

t cos 3 t C 2 >
n s 3

K1 n C 1 sin n t
n 9K n2 .

(The sum on the right converges to a bounded function, with absolute value less that
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>
n s 3

1
n 9K n2 !N

by ratio comparison to the convergent series

>
n = 1

N
1
n3 .)

8)  We discussed the analogy between constant coefficient first-order linear differential equations (in 
Chapter 1), and first order systems of differential equations (In Chapter 5).  Use matrix exponentials and 
the "integrating factor" technique to show that for first order systems with constant matrix A, the general 
solution to

x# t = A x C f t   
is given by the formula

x t = et A eKt Af t  dt  C et Ac.

(In the formula above, eKt Af t  dt is standing for any particular antiderivative of eKtAf t , and the 

displayed formula is expressing x t  as xPC xH.)
Hint:  begin by rewriting the system as

x# t KA x = f t
and then find an appropriate (matrix) integrating factor.

(10 points)

solution:
x# t KA x = f t

0eKt A x# t KA x = eKt Af t  

0
d
dt

eKt Ax t = eKt Af t

0 eKt Af t = eKt Af t  dtC c 

0 x t = et A eKt Af t  dt  C et Ac = xPC xH.

Note:  One uses the "universal" product rule we discussed in class, and
d
dt

eKt A = eKt AA

 to justify
d
dt

eKt Ax t =eKt A x# t KA x .
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Fourier series information:  For f t  of period P = 2 L, 

f w
a0
2 C >

n = 1

N

ancos n  p
L t C >

n = 1

N

bnsin n p
L t

with

a0 =
1
L

KL

L
f t dt        (so 

a0
2 =

1
2 L

KL

L

f t dt is the average value of f)

an d f, cos n p
L  t =

1
L

KL

L

f t cos n p
L  t  dt,  n 2;

bn d f, sin n p
L  t =

1
L

KL

L

f t sin n p
L  t  dt, n 2;

Particular solutions from Chapter 3 or Laplace transform table:
x## t Cw0

2
 x t = A sin w t  

xP t =
A

w0
2
Kw

2 sin w t      when wsw0

xP t =K
t

2 w0
 A cos w0 t      when w = w0

................................................................................................................
x## t Cw0

2
 x t = A cos w t  

xP t =
A

w0
2
Kw

2 cos w t      when wsw0

xP t =
t

2 w0
 A sin w0 t      when w = w0

............................................................................................................

x##C c x#Cw0
2
 x = A cos w t      cO 0

xP t = xsp t = C cos w t K a  
with

C =
A

w0
2
Kw

2 2
C c2w

2
  .   

cos a =
w0

2
K w

2

w0
2
Kw

2 2
C c2w

2
 

sin a = c w

w0
2
Kw

2 2
C c2w

2
 .

.......................................................................................................
x##C c x#Cw0

2
 x = A sin w t      cO 0

xP t = xsp t = C sin w t K a  
with

C =
A

w0
2
Kw

2 2
C c2w

2
  .   
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cos a =
w

2
K w0

2

w0
2
Kw

2 2
C c2w

2
 

sin a = c w

w0
2
Kw

2 2
C c2w

2
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