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Name.........................................................................................

I.D. number................................................................................

Math 2280-001   Spring 2015
PRACTICE FINAL EXAM

(modified from Math 2280 final exam, April 29, 2011)

     This exam is closed-book and closed-note.  You may  use a scientific calculator, but not one which is 
capable of graphing or of solving differential or linear algebra equations.  Laplace Transform and integral 
tables are included with this exam.  In order to receive full or partial credit on any problem, you must
show all of your work and justify your conclusions.  This exam counts for 30% of your course grade.  
It has been written so that there are 150 points possible,  and the point values for each problem are 
indicated in the right-hand margin.  Good Luck!

problem        score       possible

1           _______        20

2           _______        20

3           _______        30

4           _______        15

5           _______        25

6           _______        15

7           _______        15

8           _______        10

total        _______       150
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1)  Find the matrix exponentials for the following two matrices. Work one of problems using the power 
series definition, and the other one using the fundamental matrix solution approach (your choice).  As it 
turns out, both methods are reasonable for both problems.

1a)

A =
0 1

1 0
(10 points)

1b)

B =
0 1

K1 0
(10 points)
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2a)  Use Laplace transform techniques to find the general solution to the undamped forced oscillator 
equation with resonance:

x## t Cw0
2
 x t = F0 sin w0 t .

(10 points)

2b)  Use Laplace transform to find the general solution to the non-resonant undamped forced oscillator 
equation

x## t Cw0
2
 x t = F0 sin w t

ws w0

(10 points)
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3)  Consider the following three-tank configuration.  Let tank i have volume Vi t and solute amount 
xi t at time t.  Well-mixed liquid flows between tanks one and two, with rates r1, r2, and also between 
tanks two and three, with rates r3, r4 , as indicated.

3a)  What is the system of  6 first order differential equations governing the volumes  V1 t ,  V2 t , V3 t  
and solute amounts x1 t ,  x2 t , x3 t ?  (Hint: Although most of our recent tanks have had constant 
volume, we've also discussed  how to figure out how fast volume is changing in input/output models.

(6 points)

3b)  Suppose that all four rates are 100 gallons/hour, so that the volumes in each tank remain constant.  
Suppose that these volumes are each 100 gallons.  Show that in this case, the differential equations in (2a) 
for the solute amounts reduce to the system

x1 # t

x2 # t

x3 # t

=

K1 1 0

1 K2 1

0 1 K1
 

x1

x2

x3

(4 points)
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> > 

(1)(1)

> > 

3c)  Maple to the rescue!  Maple says that

with LinearAlgebra :
A dMatrix 3, 3, K1, 1, 0, 1,K2, 1, 0, 1,K1 ;
 Eigenvectors A ;

A :=

K1 1 0
1 K2 1
0 1 K1

0
K1
K3

,

1 K1 1
1 0 K2
1 1 1

Use this information to write the general solution to the system in (3b).
(5 points)

3d)  Solve the initial value problem for the tank problem in (3b), assuming there are initially 10 pounds of 
solute in tank 1, 20 pounds in tank 2, and none in tank 3.  

(10 points)

3e)  What is the limiting amount of salt in each tank, as t approaches infinity?  (Hint: You can deduce this 
answer, no matter whether you actually solved 4d, but this gives a way of partially checking your work 
there.)

(5 points)



6

4)  Although we usually use a mass-spring configuration to give context for studying second order 
differential equations, the rigid-rod pendulum also effectively exhibits several key ideas from this course.  
Recall that in the undamped version of this configuration, we let the pendulum rod length be L, assume the 
rod is massless, and that there is a mass m attached at the end on which the vertical graviational force acts 
with force m$g.  This mass will swing in a circular arc of signed arclength s = L$q from the vertical, where
q is the angle in radians from vertical.  The configuration is indicated below.

4a) Use the fact that the undamped system is conservative, to derive the differential equation for q t ,

q## t  C 
g
L
$sin q t  = 0.

(10 points)
Hint:  Begin by express the TE=KE+PE in terms of the function q t  and its derivatives.  Then compute 
TE# t  and set it equal to zero.

4b)  Explain precisely how the second order differential equation in (5a) is related to the first order system 
of differential equations

x ' t

y ' t
=

y

K
g sin x

L
(5 points)
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5)  Consider the following 3-mass, 2-spring zero-drag "train"configuration below.  At rest the cars are 
separated by certain distances and the springs are neither pulling nor pushing.  From that equilibrium 
configuration, the train is put pushed into motion along a track, and the displacements from equilbrium are 
measured by x1 t , x2 t , x3 t  as indicated.  

5a) Use Newton's law and the Hooke's law (linearization), to derive the system of differential equations for
x1 t , x2 t , x3 t .

(8 points)

5b)  Show that in case units are chosen so that the numerical values of all the masses are the same as the 
numerical values of the spring, i.e. m1 = m2 = m3 = k1 = k2 = k3 then the system above reduces to

x1 ## t

x2 ## t

x3 ## t

=

K1 1 0

1 K2 1

0 1 K1
 

x1

x2

x3

(4 points)
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> > 
> > 

(2)(2)

5c)  Exhibit the general solution for the system in 5b.  Note that you've already seen this matrix in problem 
3:

with LinearAlgebra :
A dMatrix 3, 3, K1, 1, 0, 1,K2, 1, 0, 1,K1 ;
 Eigenvectors A ;

A :=

K1 1 0
1 K2 1
0 1 K1

0
K1
K3

,

1 K1 1
1 0 K2
1 1 1

(8 points)

5d)  Describe the general motion of the train as a superposition of three fundamental modes.
(5 points)
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6a) We consider a 2 p-periodic saw-tooth function, given on the interval (Kp , p) by f t = t , and equal to
zero at every integer multiple of p.
Here's a graph of a piece of this function:

t
K8 K6 K4 K2 2 4 6 8

K3

K1

1

3

Derive the Fourier series for f t ,

f t  =  2 >
n = 1

N
K1 n C 1 sin n t

n
 .

(10 points)

6b)  Use the Fourier series above to explain the identity
p
4

 = 1K
1
3
C

1
5
K

1
7
C

1
9
K....

(5 points)
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7)  Consider the saw-tooth function f t  from problem 6, and the forced oscillation problem

x## t C 9$x t = f t .

7a) Discuss whether or not resonance occurs.  
(5 points)

7b)  Find a particular solution for this forced oscillation problem.  Hint: Use the Fourier series for f t  
given in problem 6.  You may make use of the particular solutions table on the next page

(10 points)
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8)  We discussed the analogy between constant coefficient first-order linear differential equations (in 
Chapter 1), and first order systems of differential equations (In Chapter 5).  Use matrix exponentials and 
the "integrating factor" technique to show that for first order systems with constant matrix A, the general 
solution to

x# t = A x C f t   
is given by the formula

x t = et A eKt Af t  dt  C et Ac.

(In the formula above, eKt Af t  dt is standing for any particular antiderivative of eKtAf t , and the 

displayed formula is expressing x t  as xPC xH.)
Hint:  begin by rewriting the system as

x# t KA x = f t
and then find an appropriate (matrix) integrating factor.

(10 points)
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Fourier series information:  For f t  of period P = 2 L, 

f w
a0
2 C >

n = 1

N

ancos n  p
L t C >

n = 1

N

bnsin n p
L t

with

a0 =
1
L

KL

L
f t dt        (so 

a0
2 =

1
2 L

KL

L

f t dt is the average value of f)

an d f, cos n p
L  t =

1
L

KL

L

f t cos n p
L  t  dt,  n 2;

bn d f, sin n p
L  t =

1
L

KL

L

f t sin n p
L  t  dt, n 2;

Particular solutions from Chapter 3 or Laplace transform table:
x## t Cw0

2
 x t = A sin w t  

xP t =
A

w0
2
Kw

2 sin w t      when wsw0

xP t =K
t

2 w0
 A cos w0 t      when w = w0

................................................................................................................
x## t Cw0

2
 x t = A cos w t  

xP t =
A

w0
2
Kw

2 cos w t      when wsw0

xP t =
t

2 w0
 A sin w0 t      when w = w0

............................................................................................................

x##C c x#Cw0
2
 x = A cos w t      cO 0

xP t = xsp t = C cos w t K a  
with

C =
A

w0
2
Kw

2 2
C c2w

2
  .   

cos a =
w0

2
K w

2

w0
2
Kw

2 2
C c2w

2
 

sin a = c w

w0
2
Kw

2 2
C c2w

2
 .

.......................................................................................................
x##C c x#Cw0

2
 x = A sin w t      cO 0

xP t = xsp t = C sin w t K a  
with

C =
A

w0
2
Kw

2 2
C c2w

2
  .   
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cos a =
w

2
K w0

2

w0
2
Kw

2 2
C c2w

2
 

sin a = c w

w0
2
Kw

2 2
C c2w

2
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