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Math 2280-001 Spring 2015
FINAL EXAM

This exam is closed-book and closed-note. You may use a scientific calculator, but not one which is
capable of graphing or of solving differential or linear algebra equations. A Laplace Transform table and
particular solution table are included with this exam. In order to receive full or partial credit on any
problem, you must show all of your work and justify your conelusions. This exam counts for 30% of
your course grade. It has been written so that there are 150 points possible, and the point values for each
problem are indicated in the right-hand margin. Good Luck!

problem score  possible

1 25
2 15
3 30
4 2
5 I
6 I 1
7 I &
8 15

total 150



la} Find the eigenvalues and eigenspace bases for the following matrix:

7]

Hint: The characteristic polynomial has integer roots.
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1b) Check that 4 y =4 y for each eigenpair (A, v) that you found in part a. This is to catch any mistakes
you may have made, since the matrix in 4 reappears frequently in this exam.
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le) Find € 4 for the matrix in part a. There are two approaches you may take: either use your work from
part a to first find a fundamental matrix (also known as a non-singular Wronskian matrix) for the system
x'(f) = A x, and work from there; or, use A S=S A (inthe formA=5A S_l) to compute the power series
for ' directly. If you successfully compute ¢'“ both ways you will receive 10 extra credit points.
(15 points)
(10 extra credit points also possible)
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2a) Use Laplace transform techniques to find the general solution to the undamped forced oscillator
equation with resonance:

2 FO
(1) + oy x(t) = " cos(coo t)
x(0) =x,
x'(0)=v,.
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2b) Consider the more general forced oscillation problem,
2
X" (8) + ooy x(2) =1(1)
x(0) =x,
x'(0) =v,. “
Find a formula for x(¢), that will be valid no matter what function £ (¢#) is used to force the system (as long
as f(f) is piecewise continuous with at most exponential growth, so that it has a Laplace transform). Hint:
part of your solution will be a convolution integral involving the forcing function f.
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3) Consider a general input-output model with two compartments as indicated below. The compartments

contain volumes ¥}, ¥, and solute amounts x, (£), x, (£) respectively. The flow rates (volume per time) are

indicated byJ i=1..6 . The two input concentrations (solute amount per volume) are €ps Cs-
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3a) What is the system of 4 first order differential equations governing the volumes Vi (0), V() and
solute amounts x, (£), x,(¢)?
V)= vy (8 points)
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3b) Supposerzwr =100, r, =r,=r,=200,r,=300 o Verify from your work in 1a that the

volumes V| (¢), ¥, (¢) remain constant.
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3d) Find the general solution to

;f, 1()

%' (1)
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Note that the matrix in this problem is the same as the one in problem 1. You may refer to your results
from that problem. Hint: You may use x= X, t+ X, Laplace transforms, or any other method we've

discussed in this course, in order to find the general solution.
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4) Although we usually use a mass-spring configuration to give context for studying second order
differential equations, the rigid-rod pendulum also effectively exhibits several key ideas from this course.
Recall that in the undamped version of this configuration, we let the pendulum rod length be L, assume the
rod is massless, and that there is a mass 2 attached at the end on which the vertical graviational force acts
with force m-g. This mass will swing in a circular arc of signed arclength s = L -0 from the vertical, where
0 is the angle in radians from vertical. The configuration is indicated below.

L-Leos® s=L0 \L 3

4a) Use the fact that the undamped system is conservative, to derive the differential equation for 6(#),
0" (1) + %-sin(ﬁ(t}) = 0.
(10 points)

Hint: Begin by express the TE=KE+PE in terms of the function ©(#) and its derivatives. Then compute
TE' (t) and set it equal to zero.

TE = e+ PE = f;’Mv1+ "*\\j"‘

= ds - e
V= Lelt)

I = L-Leos &
TE > Lm 701" + g (L-L wséeltr)
= e/ 61 - Aol g (- (580G
O EML@/[ Lo +-3s;ih(9]
N
t0 l&tb?+ alk tsela L{ol.-?o iv\.‘la'
= o= Lo &-3S!‘n9

(n 0-=0e" F% gfn(‘?)



4b) For small oscillations (6(f) = 0) we replaced the non-linear differential equation in a with the
linearization

) e+ £o(=0.

Use the Taylor series for sin{0) to explain why this is a good approximation to the exact difterential
equation in a, when e.g. [8] < 0.1 (radians).
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4d} In case the numerical value of 7

1 the differential equation in b becomes

8" () +08(1)=0
and the corresponding first order system in ¢ becomes
0 1% ¥q
-10 X, = —x,

0 ‘
5'(9)

Sketch the phase portrait for the first order system, and classify the origin as one of: nodal source, nodal
sink, saddle point, spiral source, spiral sink, stable center.
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5a) Find the general solution to the system of differential equations
xl L) (t)

5" (1)

(8 points)
Hint: This second order system of DE's could be modeling a two-mass, three-spring system without
damping and so it will have solutions that oscillate. Also, this is the same matrix as in problem 1 and you

may use results from that problem.
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5b) Identify and describe the twg fundamental modes of oscillation in the system abovg.
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Sc)Setm =1, m, = %, k =2,k =1,k =1 Show that the displacements x, (¢), x,{f) of the two

masses from equilibrium in the configuration below satisfy the system in part 3a, i.e.
x (1) =-3x +x,

x " (t)=2x —4x,
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Hint: Use Newton's second law that mass times acceleration equals net forces.
(5 points)
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6) We consider a 2 mt-periodic tent-wave function, given on the interval (-7, @) by f(z) = | ¢]

Here's a piece of the graph of this function.
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7). Consider the tent-wave function f(¢) from problem 6, and the forced oscillation problem

X' (£) + 9-x(1) =£(5).

7a) Discuss whether or not resonance occurs.
w°‘=3, so e w=2 ]-an

o £ S

_ i -:—{ws'ét (5 points)
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this forced oscillation problem. Hint: Use the Fourter series for f(¢)
ou may make use of the particular solutions table at the end of the exam.
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8) General principles: Pick 3 of the following 4 parts to solve. You will receive credit for the best 3
solutions, for a possible total score of 15 points.

84) Suppose that p is an eigenvector of 4, with eigenvalue . Verify that x(¢) = & tz is a solution to

x'()=Ax
«Fir\, ) = (5 points)
1 @ .
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8b) Suppose that v is an eigenvector of 4, with eigenvalue A. Suppose & < 0 and define m= ./ -A .

Verify that x(¢) = cos{® £) v and p(¢) = sin{ @ ) p are solutions to
,&’ ! (t} = A £
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8c) Prove that if L : ¥— W is a linear transformation, and if ¥p € Fsolves the nonhomogeneous equation
L{yp)=f
then every solution of the equation

Liy)=f

is of the form y =y, + y,, where y,, is some solution of the homogeneous equation

. L{y)=0. .
@ H’ L(j‘,') 2 —E : (5 points)
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8d) We discussed the analogy between constant coefficient first-order linear difféfential equationd (in S vl

Chapter 1), and first order systems of differential equations (In Chapter 5). Use matrix exponentials and $° 4%

the "integrating factor" technique to show that for first order systems with constant matrix 4, the general 1 4 Y
solution to

x'(1)=Ax+£(1)
is given by the formula

x(1) = e’AUe"A[(:) dt) + e,
(In the formula above, J e "“f (r) dt s standing for any particular antiderivative of ¢ £ (1), and the
displayed formula is expressing x(¢) as Xp T X;r)

Hint: begin by rewriting the system as

x'(t)-Ax=£f(1)
and then find an appropriate (matrix) integrating facto_r_,‘

- 4 = R (5 points)
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Fourier series information: For f (t) of period P=217L,

fr~ =+ z a cos[n—tJ z b sm(n E 1]

n=1 n=1
with

L
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a,= TJ finde (s0 5= ﬁj S(0)dr is the average value of )
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= ( j sin(nlz—- t)>= i_JL f(r)sm( ]dt nelN
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Particular solutions fiom Chapter 3 or Laplace transform table:

X'+ cug x(1) =4 sin(o 1}
A
x ()= ﬁsin(m 1}  when o= g
r 0)0 —

f
x (1) =- m A cos.(m0 t) when © = @

2+ mg x(f) =4 cos(w 1)

x, (1) = ——cos{® s} when @ = @,

Wy — @
H
X, (1) = 2oy Asin{wy 1) when 0=,

X'+ ex'+mpx=Acos(wr) ¢>0

x (=x (1)=C cos{w? —a)
F p
with

x"+ex'+ mgx=A sinfws) e>0

xP(t) =xsp(t) =Csin(w ¢ — o)
with
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Table of Laplace Transforms

This table summarizes the general properties of Laplace transforms and the Laplace transforms of particolar functions
derived in Chapter 10.

S
af () + bg(}
i
S
SO
1

f Fleyde

g
e" f(1)
u(t —a)f@—a)
'L flmygh ~ t)de
tf (1)

"

Ji0)
!

S}, period p

% 3
3
5

F(s)
aF(5) + bG(s)
sF(s)— f(0)

SEF(s) — sf(0) — ()

s*Fis) — .S“'""f(ﬂ) PR ftu—l)(o)

Fis)
5

F{s —a)

e~ F (s}

F{s)YG(s)
—F'(s)

(=1 Fi(s)

o
f Fl{a)do

!
1—em#

P
f e~ F(n de
(1]

75
Fla 4 1)
sa-{—l

cos kt
sin ke
cosh kt
sinh k1
& coskr
e sin ki
1 . k&
ﬁ(sm t — ktcos kt)
F
— sink?
T
! (sink? + krcoskr)
% i
w(t —u)

s —a)

(-plt/al  (square wave)

|[£:[| (staircase)
a

5-a
(s —a)l+ %2
L S
(s —aP+k*
S —
(sz ey kl)z
.
(24 X2)2
S
T+ B

1 as
~ tanh —
5 & 2

e—as

s(1 —e*")

18



