Math 2280-1

FINAL EXAM
May 1, 2006

This exam is closed-book and closed-note. You may use a scientific calculator, but not one which is
capable of graphing or of solving differential or linear algebra equations. In order to receive full or
partial credit on any problem, you must show all of your work and justify your conclusions. This
exam counts for 30% of your course grade. It has been written so that there are 150 points possible, and
the point values for each problem are indicated in the right-hand margin. Good Luck!

1) Use Laplace Transform technigues to solve the initial value problem for a resonating spring:
X'y +4x(t) =3sm(2 1)
x(0) = x,
X' (0)=v,.
(15 points)



2) You will be using the following matrix A in problems (3) and (4). In particular you will need the
eigenvalues and eigenvectors. Here is the matrix:

2a) Find the characteristic polynomial of A, and factor it to show that the eigenvalues of A are 0, -3, -1.
(5 points)

2b) A basis for the A =0 eigenspace is the vector [1,1,1]. Find bases for the other two eigenspaces, and
exhibit all three vectors together as an eigenbasis for A. Make sure to check your answers carefully, as

these eigenvalues and eigenvectors will be used later.
(10 points)



3) Consider the following three-tank configuration. Let tank i have volume V(¢) and solute mass x(z), at
time t. Well-mixed liquid flows between tanks 1 and 2, and also between tanks 2 and 3, with rates r|, 7,

r,. I, as indicated in the diagram.

X, 1)

3a) What are the 6 differential equations governing the volumes V| (1), V. (1), Vi(1), and the solute masses

x, (1), x,(1), x5(2)?

(4 pomts)

3b) Suppose all four rates are 100 gallons/hour, so that the volumes remain constant. Suppose all three
volumes are 100 gallons. Show that in this case the three differential equations in 3a) for the solute

masses vield the system

dx,

dt

dx,

dt

dx3

dt

(4 points)



3¢) Continuing with the system from (3b), if tank 1 initially had 10 kg of solute, tank 2 had 20 kg, and
tank 3 had no solute, what do you expect the limiting solute amounts per tank to be, as time approaches
infinity? Explain your reasoning.

(2 points)

3d) Solve the initial value problem for (3b), using the initial values in (3¢). Make use of the fact that the
matrix in this system is exactly the one you found eigenvectors and eigenvalues for already, in problem

2. (Don’t repeat the work from that problem, use the results!)
(10 points)



4) Consider the following configuration of three masses held together with two springs, with positive
displacements from equilibrium measured to the right, as usual. Notice that this train of springs is not

anchored to any wall!
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4a) Derive the system of three second order differential equations for the displacements x, (1), x,(f), x;(¢)
using Newton’s and Hooke's Laws. _

(6 points)

4b) Show that in case all three masses m are identical and both springs constants k are also equal, and if
mass and force units are chosen so that m=k, then the system in part (4a) becomes

;I}'xi(t)
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(2 points)



4c) Let B be any n by n matrix which has an eigenvector v with eigenvalue zero. Show that

y{r)=v
Zit)=tv
both solve the second order homogeneous system
X' (=Bx
(5 points)
4d) What is the dimension of the solution space for the spring system in (4b)? Explain!
: : (3 points)

4¢) Write down the general solution to this spring system from (4b), making use of the fact that the

matrix A from problem (2) has appeared again!
(6 points)

4f) Describe the motions associated to each of the fundamental modes in this spring system.
{3 points)



5) Consider a population x(t) governed by the differential equation
x’(t)ﬂ']xmxz .
5a) Find the equilibrium solutions and draw the phase diagram for this population model. Indicate

which equilibrium solutions are stable and which are unstable.
(5 points)

5b) Is this a logistic or doomsday-extinction model? Explain.
(2 points)

5¢) Solve the initial value problem
x'(O=Tx— X

x(0) =14
(8 points)



6) Consider the system of differential equations below which models two populations x(t) and y(t).
(You can think of this as an extension of problem (5) for the population x(t), which now finds itself in

the presence of another species y(1).)

dx
d

@
di

{7xmx2~—xy}
~Sy+xy

6a) If this was a model of two interacting populmations, which model would it be? Explain.

(2 points)

6b) Find the equilbrium solutions to this system of differential equations.

(4 points)

6¢c) Only one of your equilbrium solutions has postive populations of both species. Linearize the
population model near this equilbrium point. Use your analysis to classify which type of equilbrium

point this 1s.

(8 points)



here in the first quadrant the initial

assuming both populations start out positi\Le. {Depending

on your analysis in (6¢) your prediction may or may not depend on w

population vector is located.)

the positive x and y axes. Then make a prediction about long term

fill in the missing piece of the pplane phase portrait below. Also draw

the the phase diagrams along each of
behavior of solutions to this popu

lation model,

6d) Using your work from (6¢),

(6 points)
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7) Let f(t) be a 2L-periodic function. Recall th
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where the Fourier coefficients are given by
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7a) Let f(t) be the sawtooth function with period 2 m, defined by f(1) =t for—n<t < n Sketch the

graph of .

7b) Prove that f(t) has Fourier series
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7¢) Consider the same spring configuration as in problem (1), but now force with the sawtooth function
f(t).

X’ (0 + 4 x((t) = (V)
Explain why this differential equation exhibits resonance, even though the period of f(t) is not the natural

period of the unforced system.
(5 points)

7d) Assume infinite superposition is valid in order to write down the general solution to the forced
oscillator in (7¢). Hints: don’t forget the homogeneous solution, and for the resonating piece of your

parcticular solution you can guote any work you did problem (1}.
(10 points)



8) Consider the wave equation
V=23 Yy

for a function y(x,1), with interval 0 < x < 7, and t > 0.
Solve this wave equation for t > 0, with fixed endpoint boundary conditions,

y(0, ) =0=y(m 1)
with initial displacement

y(x, 1)=2sin(3 x)
and initial velocity

yLx, 0)=-3 sin{2 x),

for O<x < T
(10 points)



9) The existence and uniqueness theorem for linear first order systems of differential equations says that
if A(t) is a continuous, n by n matrix-valued function of t. and f(t) is a continuous n-vector valued

function, each on the in t-interval [, and if ;18 a pointin [, then each initial value problem
X (1) = A() x(t) + £(t)
X(t,) = x,
has a unique solution x(t), defined for all t in I. Use this theorem to explain (i.e. prove) why the solution
space to the homogeneous system
x’(t) = Aty x(t)

is n-dimensional.
(10 points)



10a) What is Euler’s formula?
(2 points)

10b) Show that the addition angle formulas for sine and cosine are equivalent to the identity
e(i(ﬂwﬁ)) oy UGB
e €

(3 points)



