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This is the Earthquake project on pages 333-334 of Edwards-Penney.  You are mostly on your own for 
this project, but here is a small example of a spring system worked out on Maple, so that you can get an 
idea about useful commands to use.   

Let’s start with Example 1 on page 323 of Edwards-Penney.  Initially it is an unforced system with two 
masses and two springs, as you can see from the description on page 323.  We can write the system as 
Mx’’=Kx, where M is the ‘‘mass matrix’’, K is the ‘‘spring matrix’’, and x is the displacement vector.  
Following the book’s notation, we enter

> with(linalg):with(plots):with(DEtools): #tools for project
> M:=matrix([[2,0],[0,1]]);
K:=matrix([[-150,50],[50,-50]]);
A:=evalm(inverse(M)&*K);

 := M










2 0

0 1

 := K










-150 50

50 -50

 := A










-75 25

50 -50
Then the system can also be written as x’’=Ax, and the eigenvectors of A determine fundamental modes, 

and the corresponding negative eigenvalues are the (opposites) of the squares of the corresponding 
angular frequencies:
> eigenvects(A);

,[ ], ,-100 1 { }[ ],1 -1 [ ], ,-25 1 { }[ ],1 2
Therefore, the natural frequencies of this system are the 10 and 5, and the two fundamental modes 
correspond to the masses moving in opposite directions (with equal amplitudes and angular  frequency 
10) and in parallel directions (with amplitude ratio of two and angular frequency 5).  
     Now, let’s consider the forced system with force vector equal to cos(wt)[0,50], i.e. the second mass is 
being forced periodically.  In other words, the system Mx’’=Kx + F, where F=cos(wt)[0,50] ; this is 
Example 3 on  page 433.  We follow the method described on that page to find a particular solution to 
the forced oscillation problem, of the form given by equation (31).  Here is the Maple version of the 
details summarized in the text:
> F0:=evalm(inverse(M)&*vector([0,50]));
    #The F0 in the normalized equation (32), page 329
Iden:=array(1..2,1..2,identity);
    #the 2 by 2 identity matrix
Aleft:=omega->evalm(A + omega^2*Iden);
    #the matrix function multiplying
    #c on the left side of (32)



c:=omega->evalm(-inverse(Aleft(omega))&*F0);
    #the solution vector c(omega) to (32),
    #obtained by multiplying both sides of equation
    #(34) on the left, by the inverse to Aleft

 := F0 [ ],0 50

 := Iden ( )array , , ,identity  .. 1 2  .. 1 2 [ ]

 := Aleft →ω ( )evalm +A ω2 Iden

 := c →ω ( )evalm − ( )‘&*‘ ,( )inverse ( )Aleft ω F0
> c(omega); #see equation (35) page 329









,1250

1

− +2500 125 ω2 ω4 −50
− +75 ω2

− +2500 125 ω2 ω4

The vector c(w) above, times the oscillation cos(wt), is a particular solution to the forced oscillation 
problem we are considering.  If we assume that our actual problem has a small amount of damping, then 
we expect that this particular solution is very close to the steady periodic solution to the damped 
problem.  See the discussion on page 330.  We can study resonance phenomena for these slightly 
damped problems by plotting the maximum amplitude of the steady state solutions to the undamped 
problems.  That would be the maximum absolute value of c1 and c2 above.  Use the Maple command 
‘‘norm’’ to measure this maximum amplitude:
> norm(c(omega));









max ,1250

1

− +2500 125 ω2 ω4 50
− +75 ω2

− +2500 125 ω2 ω4

(If you wanted the actual amplitude of the solution when written in amplitude-phase form you would 
want the square root of c1^2 + c2^2, but that function and the one above both blow up similarly near the 
two natural frequencies.)
> plot(norm(c(omega)),omega=0..15,amplitude=0..15,
       numpoints=200,color=‘black‘);
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This is qualitatively the picture on page 330, figure 5.3.10.  Notice the peaks at angular frequency 5 and 
10, corresponding to approximate resonance near the two fundamental modes.  

      We can get a plot of resonance as a function of period by recalling that 2*Pi/T=omega:
> res:=T->norm(c(2*Pi/T));



plot(res(period),period=0.1..3,amplitude=0..15,
numpoints=200,color=‘black‘);

 := res →T






norm







c 2

π
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COMMENTS FOR THE EARTHQUAKE PROJECT:  
(1)  Students are often confused by the forcing term in equation (2) of page 334, namely 
> E*(omega)^2*cos(omega*t)*b;

E ω2 ( )cos ω t b
where b is the transpose of  [1,1,1,1,1,1,1].  They ask, ‘‘how can the earthquake be forcing all seven 
stories, it seems like it’s just shaking the bottom one.’’  Well, the students are correct, but so is 
Edwards-Penney.  The authors talk about an ‘‘opposite inertial force’’ being the reason for this forcing 
term and  here’s one way to think about it. Maybe your instructor can help you more if it’s still 
confusing.  Anyhow, think of the ground as the zeroth story.  In the rest frame it is shaking with 
oscillation Ecos(wt).  And so its acceleration is its second time derivative, namely -E*w^2*cos(wt).  If 
you write down the inhomogeneous system of EIGHT second order DE’s for the accelerations of stories 
zero thru seven, the  forcing (well, accelerating) term is -E*w^2*cos(wt)*[1,0,0,0,0,0,0,0], as you would 
expect.  Call the solution 8-vector to this system y(t), then see what the shaking looks like to someone on 
the ground by letting 
x(t)=y(t)-E*cos(wt)*[1,1,1,1,1,1,1,1].  Then the zeroth story component of x(t) will be identically zero, 
and the other seven components will satisfy equation (2) on 334, exactly as the authors claim.

(2)  For large matrices the eigenvect command won’t work well unless you enter at least one decimal 
number; if all entries are rational numbers (expressed without decimal points), Maple tries to find the 
eigenvalues and eigenvectors algebraically and exactly, instead of numerically, and often fails. Make 
sure at least one of your matrix entries has a decimal point in it.  


