Math 2280-2

Maple Project 1, Part 2
January 25, 2001

Y ou should download this file from our Maple home page
http://lwww.math.utah.edu/~kor evaar/2280spring01/2280maple.html, and then open it from Maple.
It contains discussion and Maple commands which will help you answer the questions on the Part 2
solution template, which is also available at the Maple page.

In this part of the project we will study numerical methods for approximating solutions to first order
differential equations. We will see soon how higher order differential equations can be converted into
first order systems of differential equations. It turns out that there is a natural way to generalize what
we do here in the context of asinglefirst order differential equations, to systems of first order
differential equations. So understanding this project material will be an important step in understanding
numerical solutions to higher order differential equations and to systems of differential equations.

We will be working through material from sections 2.4-2.6 of the text.

The most basic method of approximating solutions to differential equationsis called Euler’ s method,
after the 1700’ s mathematician who first formulated it. If you want to approximate the solution to the
initial value problem dy/dx = f(x,y), y(x0)=yO, first pick astep size**h’’. Then for x between x0 and
x0+h, use the constant slope f(x0,y0). At x-value x1:=x0+h your y-value will therefore be y1:=y0 +
f(x0,yO)h. Then for x between x1 and x1+h you use the constant slope f(x1,y1), so that at x2:=x1+h
your y-valueisy2:=y1+f(x1,yl)h. You continuein thismanner. Itiseasy to visuaizeif you understand
the slope field concept we' ve been talking about; you just use the slope field with finite rather than
infinitesimal stepping in the x-variable. Y ou use the value of the slope field at your current point to get &
slope which you use to move to the next point. It is straightforward to have the computer do this sort of
tedious computation for you. In Euler’stime such computations would have been done by hand!

A good first example to illustrate Euler’ s method is our favorite DE from the time of Calculus,
namely dy/dx =y, say withinitial value y(0)=1, so that y=exp(x) isthe solution. Let’stake h=0.2 and try
to approximate the solution of the x-interval [0,1]. Since the approximate solution will be piecewise
affine, we only need to know the approximations at the discrete x values x=0,0.2,0.4,0.6,0.8,1. Here'sa
simple ‘‘do loop’’ to make these computations.

[>restart: #clear any nenory fromearlier work
> x0:=0.0; xn:=1.0; y0:=1.0; n:=5; h:=(xn-x0)/n;
specify initia
val ues, nunber of steps, step size.

x0:=0.
xn:=1.0
y0:=1.0
n:=5

h :=.2000000000
> fi=(x,y)->y;
#this is the "slope" function f(x,y)
#in dy/dx = f(x,y). W want dy/dx =y.

I S =y -y
> x:=x0; y:=y0; #initialize x,y for the do | oop

x:=0.
L y:=10
> for i froml to n do
f(x,y): #current slope, use : to suppress out put
y + h*k: #new y value via Euler
X + h: #updat ed x-val ue:
int(x,y,exp(x));
#di spl ay current val ues,
#and conpare to exact sol ution

k:
y.
X:
pr

od:
‘od’ ' ends a do | oop

.2000000000, 1.200000000, 1.221402758
.4000000000, 1.440000000, 1.491824698
.6000000000, 1.728000000, 1.822118800
.8000000000, 2.073600000, 2.225540928

1.000000000, 2.488320000, 2.718281828

Notice your approximations are all alittle too small, in particular your final approximation 2.488...
short of the exact value of exp(1)=e=2.71828.. Thereason for thisis that because of the form of our
f(x,y) our approximate slope is always less than the actual slope. We can see this graphically using
plots:

[> with(plots):with(linalg):
> xval : =vector (n+1); yval : =vect or (n+1) ;
#to collect all our points

xval :=array(1..6,[])
| yval :=array(1..6,[])

> xval [1] : =x0; yval [1]: =y0;
#initial val ues
xval, := 0.
yval, :=1.0
> #paste in the previous work, and nodify for plotting:
for i froml to n do
x:=xval [i]: #current X

Y'—yval[l] #current vy
f(x,y): #current slope

yval[|+1] =y + h*k: #new y val ue via Eul er
xval [1+1]:= x + h: #updat ed x-val ue:
L od: # ‘od’’ ends a do | oop
C > approxsol :=pointplot({seq([xval[i],yval[i]], i=1..n+1)}):

> exactsol : =plot(exp(t),t=0..1, " col or‘=" black'):
#used t because x was al ready used above
> di spl ay({appr oxsol , exactsol });

The picture you just created is like the one in figure 2.4.3, on page 109 of the text, if you imagine line
segments connecting the approximate solution points, which in this case lie below the actual solution

2.6
2.4

2.2

1.8
1.6
1.4

1.2

graph to theinitial value problem.

It should be that as your step size*‘h’’ gets smaller, your approximations get better to the actual

solution. Thisistrueif your computer can do exact math (which it can’t), but in practice you don’t want

to make the computer do too many computations because of problems with round-off error and

computation time, so for example, choosing h=0.0000001 would not be practical. But, trying h=0.01

should be instructive.

If we change the n-value to 100 and keep the other data the same we can rerun our experiment:

od:

r > x0: =0. 0;
X:=x0; y:=y0;
> for i

k
y
X
i f

fi:

xn:=1.0; y0:=1.0; n:=100; h:=(xn-x0)/n;

froml to n do

f(x,y): #current slope

y + h*k: #new y val ue via Euler
X + h: #updat ed x-val ue:
frac(i/10)=0

then print(x,y,exp(x));

#use the *‘if’’ test to decide when to print;
#the command ‘‘frac’’ conputes the renai nder
#of a quotient, it will be zero for us if i
#is a multiple of 10. This way we only print
#t he approxi mations every 0.1 increnents, even
#t hough our actual time step is 0.01.

.1000000000, 1.104622126, 1.105170918

.2000000000, 1.220190040, 1.221402758
.3000000000, 1.347848915, 1.349858808
.4000000000, 1.488863734, 1.491824698
.5000000000, 1.644631822, 1.648721271
.6000000000, 1.816696698, 1.822118800
.7000000000, 2.006763369, 2.013752707
.8000000000, 2.216715219, 2.225540928
.9000000000, 2.448632677, 2.459603111

L 1.000000000, 2.704813833, 2.718281828

S0 you can see we got closer to the actual value of e, but really, considering how much work we did this
was not agreat result. We can make a picture of what we did as follows, using the mouse to cut and
paste previous work, and then editing it for the new situation
r>restart:with(plots):with(linalg):

War ni ng, the nanme changecoords has been redefined

Warni ng, the protected nanes norm and trace have been redefined and unprotected

>
fr=(x,y)->y;
n: =100; xO0:=0.0; yO:=1.0;
xn:=1.0; h:=(xn-x0)/n;
xval : =vect or (n+1); yval : =vect or (n+1);
#to collect all our points. Now n=100
xval [1] : =x0; yval [1]: =yO0;
#initial values
for i from1l to n do
x:=xval [i]: #current X
y:=yval[i]: “#current y
k:= f(x,y): #current slope
yval[i+1]:=y + h*k: #new y val ue via Eul er
xval [i+1]:= x + h: #updat ed x-val ue:
od: # ‘od’’ ends a do | oop

fi=(xy) -y
n:=100
x0:=0
y0:=1.0
xn:=1.0
h :=.01000000000
xval ;= array(1 .. 101, [])
yval :=array(1.. 101, [])

xval, ;=0
| yval, :=1.0
[> approxsol 2: =poi ntpl ot ({seq([xval [i],yval[i]], i=1..n+1)}):

exactsol : =pl ot (exp(t),t=0..1, color‘="red"):

#used t because x was al ready used above
di spl ay({approxsol 2, exactsol });

2.6
2.4

2.2

1.8
1.6
1.4

1.2

In more complicated problemsit isavery seriousissue to find relatively efficient ways of
approximating solutions. An entire field of mathematics, ‘‘numerical analysis’ deals with such issues
for avariety of mathematical problems. The book talks about some improvementsto Euler in sections
2.5and 2.6, in particular it discusses improved Euler, and Runge Kutta. Runge Kutta codes are actually
used in commerical numerical packages, e.g. in Maple. Let’s summarize some highlights from 2.5-2.6
below.

For any time step h the fundamental theorem of cal culus asserts that, since dy/dx = f(x,y(x)),
> y(x+h)=y(x) + Int(f(t,y(t)),t="x".."x+h");

x+h

y(x+h)=y(x)+ ? f(t, y()) dt

X
The problem with Euler is that we always approximated this integral by h*f(x,y(x)), i.e. we used the
left-hand endpoint as our approximation of the *‘average height’’. The improvementsto Euler depend
on better approximationsto that integral. ‘‘Improved Euler’’ uses an approximation to the Trapezoid
Rule to approximate the integral. The trapezoid rule for the integral approximation would be
(1/2)* h* (F(x,y (X)) +f ((x+h),y(x+h)). Since we don’'t know y(x+h) we approximate it using unimproved
Euler, and then feed that into the trapezoid rule. Thisleads to the improved Euler do loop below. Of
course before you use it you must make sure you initialize everything correctly.

> x:=x0; y:=y0; n:=5; h:=(xn-x0)/n;
x:=0.
y:=1.0

n:=5
h :=.2000000000

> for i froml to n do
k1l:=f(x,y): #l ef t - hand sl ope
k2: =f (x+h, y+h*k1): #approxi mation to right-hand sl ope
k: = (k1+k2)/ 2: #approxi mati on to average sl ope
y: = y+h*k: #i nproved Eul er update
X: = X+h: #updat e x
print(x,y,exp(x));

od:
>

.2000000000, 1.220000000, 1.221402758
.4000000000, 1.488400000, 1.491824698
.6000000000, 1.815848000, 1.822118800
.8000000000, 2.215334560, 2.225540928

1.000000000, 2.702708163, 2.718281828
Notlceyou amost did aswell with n=5 as you did with n=100 in unimproved Euler.

One can also use Taylor approximation methods to improve upon Euler; by differentiating the
equation dy/dx = f(x,y) one can solve for higher order derivatives of y in terms of the lower order ones,
and then use the Taylor approximation for y(x+h) in terms of y(x). See the book for more details of this
method, we won't do it here.

In the same vein as*‘improved Euler’’ we can use the Simpson approximation for the integral instead
of the Trapezoid one, and this |eads to the Runge-Kutta method. (Y ou may or may not have talked about
Simpson’s Rule in Calculus, it is based on a quadratic approximation to the function f, whereas the
Trapezoid rule is based on afirst order approximation.) Hereisthe code for the Runge-Kutta method.
Thetext explainsit in section 2.6. Simpson’ s rule approximates an integral in terms of the integrand
values at each endpoint and at the interval midpoint. Runge-Kutta uses two different approximations for
the midpoint value.

Before you use the loop below you must initialize your values, like you did above.

>

> x:=x0; y:=y0; n:=5; h:=(xn-x0)/n;
x:=0.
y:=10
n:=>5

h :=.2000000000

r>for i from1l1l to n do

kl:=f(x,y): #l ef t - hand sl ope

k2: =f (x+h/ 2, y+h*k1/ 2):
k3: =f (x+h/ 2, y+h*k2/ 2) :
k4: =f (x+h, y+h*k3):

k: =(k1+2*k2+2*k3+k4)/ 6:

#1st guess at m dpoi nt sl ope
#second guess at m dpoi nt sl ope
#guess at right-hand sl ope

#Si npson’ s approxi mation for the

i nt egral
X: =X+h: #x updat e
y: =y+h*k: #y update
print(x,y,exp(x)); #di spl ay current val ues
od:

.2000000000, 1.221400000, 1.221402758
.4000000000, 1.491817960, 1.491824698
.6000000000, 1.822106456, 1.822118800
.8000000000, 2.225520825, 2.225540928
1.000000000, 2.718251136, 2.718281828

[>
Notice how close Runge-K utta gets you to the correct value of e, with n=5.

Aswe know, solutions to non-linear DE’ s can blow up, and there are other interesting pathologies as
well, so if oneisdoing numerical solutionsthereisarea need for care. The text has a number of
examples of this. In the solution template which accompanies this handout you are asked to work two

problemsin thisvein. You may aso want to use the routinesin this handout to do some of your book
homework problems.

