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     You should download this file from our Maple home page 
http://www.math.utah.edu/~korevaar/2280spring01/2280maple.html, and then open it from Maple.  
It contains discussion and Maple commands which will help you answer the questions on the Part 2 
solution template, which is also available at the Maple page.

     In this part of the project we will study numerical methods for approximating solutions to first order 
differential equations.  We will see soon how higher order differential equations can be converted into 
first order systems of differential equations.   It turns out that there is a natural way to generalize what 
we do here in the context of a single first order differential equations, to systems of first order 
differential equations.  So understanding this project  material will be an important step in understanding 
numerical solutions to higher order differential equations and to systems of differential equations.
     We will be working through material from sections 2.4-2.6 of the text.
     The most basic method of approximating solutions to differential equations is called Euler’s method, 
after the 1700’s mathematician who first formulated it.  If you want to approximate the solution to the 
initial value problem dy/dx = f(x,y), y(x0)=y0, first pick a step size ‘‘h’’.  Then for x between x0 and 
x0+h, use the constant slope f(x0,y0).  At x-value x1:=x0+h your y-value will therefore be y1:=y0 + 
f(x0,y0)h.  Then for x between x1 and x1+h you use the constant slope f(x1,y1), so that at x2:=x1+h 
your y-value is y2:=y1+f(x1,y1)h.  You continue in this manner.  It is easy to visualize if you understand 
the slope field concept we’ve been talking about; you just use the slope field with finite rather than 
infinitesimal stepping in the x-variable.  You use the value of the slope field at your current point to get a
slope which you use to move to the next point.  It is straightforward to have the computer do this sort of 
tedious computation for you.  In Euler’s time such computations would have been done by hand!
     A good first example to illustrate Euler’s method is our favorite DE from the time of Calculus, 
namely dy/dx =y, say with initial value y(0)=1, so that y=exp(x) is the solution.  Let’s take h=0.2 and try 
to approximate the solution of the x-interval [0,1].  Since the approximate solution will be piecewise 
affine, we only need to know the approximations at the discrete x values x=0,0.2,0.4,0.6,0.8,1.  Here’s a 
simple ‘‘do loop’’ to make these computations.  

> restart:  #clear any memory from earlier work 
> x0:=0.0; xn:=1.0; y0:=1.0; n:=5; h:=(xn-x0)/n;  
   # specify initial
   # values, number of steps, step size.                           

 := x0 0.

 := xn 1.0

 := y0 1.0

 := n 5

 := h .2000000000
> f:=(x,y)->y;    
   #this is the "slope" function f(x,y) 
   #in dy/dx = f(x,y).  We want dy/dx = y.

 := f →( ),x y y
> x:=x0; y:=y0;   #initialize x,y for the do loop



 := x 0.

 := y 1.0
> for i from 1 to n do
          k:= f(x,y):  #current slope, use : to suppress output
          y:= y + h*k: #new y value via Euler
          x:= x + h:   #updated x-value:
          print(x,y,exp(x));  
            #display current values, 
            #and compare to exact solution.
    od:                
       #‘‘od’’ ends a do loop  

, ,.2000000000 1.200000000 1.221402758

, ,.4000000000 1.440000000 1.491824698

, ,.6000000000 1.728000000 1.822118800

, ,.8000000000 2.073600000 2.225540928

, ,1.000000000 2.488320000 2.718281828
Notice your approximations are all a little too small, in particular your final approximation 2.488... is 
short of the exact value of exp(1)=e=2.71828..  The reason for this is that because of the form of our 
f(x,y) our approximate slope is always less than the actual slope.  We can see this graphically using 
plots: 

> with(plots):with(linalg):
> xval:=vector(n+1);yval:=vector(n+1);  
   #to collect all our points

 := xval ( )array , .. 1 6 [ ]

 := yval ( )array , .. 1 6 [ ]

> xval[1]:=x0; yval[1]:=y0;        
   #initial values

 := xval1 0.

 := yval1 1.0
>   #paste in the previous work, and modify for plotting:
for i from 1 to n do
          x:=xval[i]:  #current x
          y:=yval[i]:  #current y
          k:= f(x,y):  #current slope
          yval[i+1]:= y + h*k:   #new y value via Euler
          xval[i+1]:= x + h:     #updated x-value:
              od:                #‘‘od’’ ends a do loop  

> approxsol:=pointplot({seq([xval[i],yval[i]], i=1..n+1)}):
> exactsol:=plot(exp(t),t=0..1,‘color‘=‘black‘):   
     #used t because x was already used above

> display({approxsol,exactsol});
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The picture you just created is like the one in figure 2.4.3, on page 109 of the text, if you imagine line 
segments connecting the approximate solution points, which in this case lie below the actual solution 
graph to the initial value problem.  

    It should be that as your step size ‘‘h’’ gets smaller, your approximations get better to the actual 
solution.  This is true if your computer can do exact math (which it can’t), but in practice you don’t want 
to make the computer do too many computations because of problems with round-off error and 
computation time, so for example, choosing h=0.0000001 would not be practical. But, trying h=0.01 
should be instructive.

If we change the n-value to 100 and keep the other data the same we can rerun our experiment:
> x0:=0.0; xn:=1.0; y0:=1.0; n:=100; h:=(xn-x0)/n;
x:=x0; y:=y0;

> for i from 1 to n do
          k:= f(x,y):  #current slope
          y:= y + h*k: #new y value via Euler
          x:= x + h:   #updated x-value:
          if frac(i/10)=0
               then print(x,y,exp(x));
          fi;  #use the ‘‘if’’ test to decide when to print;
               #the command ‘‘frac’’ computes the remainder 
               #of a quotient, it will be zero for us if i 
               #is a multiple of 10. This way we only print
               #the approximations every 0.1 increments, even
               #though our actual time step is 0.01.
    od:                

, ,.1000000000 1.104622126 1.105170918



, ,.2000000000 1.220190040 1.221402758

, ,.3000000000 1.347848915 1.349858808

, ,.4000000000 1.488863734 1.491824698

, ,.5000000000 1.644631822 1.648721271

, ,.6000000000 1.816696698 1.822118800

, ,.7000000000 2.006763369 2.013752707

, ,.8000000000 2.216715219 2.225540928

, ,.9000000000 2.448632677 2.459603111

, ,1.000000000 2.704813833 2.718281828
 So you can see we got closer to the actual value of e, but really, considering how much work we did this 
was not a great result.  We can make a picture of what we did as follows, using the mouse to cut and 
paste previous work, and then editing it for the new situation
> restart:with(plots):with(linalg):
Warning, the name changecoords has been redefined

Warning, the protected names norm and trace have been redefined and unprotected

> 
f:=(x,y)->y;
n:=100; x0:=0.0; y0:=1.0;
xn:=1.0; h:=(xn-x0)/n;
xval:=vector(n+1);yval:=vector(n+1);  
   #to collect all our points. Now n=100
xval[1]:=x0; yval[1]:=y0;        
   #initial values
for i from 1 to n do
          x:=xval[i]:  #current x
          y:=yval[i]:  #current y
          k:= f(x,y):  #current slope
          yval[i+1]:= y + h*k:   #new y value via Euler
          xval[i+1]:= x + h:     #updated x-value:
              od:                #‘‘od’’ ends a do loop  

 := f →( ),x y y

 := n 100

 := x0 0.

 := y0 1.0

 := xn 1.0

 := h .01000000000

 := xval ( )array , .. 1 101 [ ]

 := yval ( )array , .. 1 101 [ ]

 := xval1 0.

 := yval1 1.0
> approxsol2:=pointplot({seq([xval[i],yval[i]], i=1..n+1)}):
exactsol:=plot(exp(t),t=0..1,‘color‘=‘red‘):   



     #used t because x was already used above
display({approxsol2,exactsol});
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     In more complicated problems it is a very serious issue to find relatively efficient ways of 
approximating solutions.  An entire field of mathematics, ‘‘numerical analysis’’ deals with such issues 
for a variety of mathematical problems.   The book talks about some improvements to Euler  in sections 
2.5 and 2.6, in particular it discusses improved Euler, and Runge Kutta.  Runge Kutta codes are actually 
used in commerical numerical packages, e.g. in Maple.   Let’s summarize some highlights from 2.5-2.6 
below.
      For any time step h the fundamental theorem of calculus asserts that, since dy/dx = f(x,y(x)),
> y(x+h)=y(x) + Int(f(t,y(t)),t=‘x‘..‘x+h‘);
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⌠
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The problem with Euler is that we always approximated this integral by h*f(x,y(x)), i.e. we used the 
left-hand endpoint as our approximation of the ‘‘average height’’.  The improvements to Euler depend 
on better approximations to that integral.  ‘‘Improved Euler’’ uses an approximation to the Trapezoid 
Rule to approximate the integral.  The trapezoid rule for the integral approximation would be 
(1/2)*h*(f(x,y(x))+f((x+h),y(x+h)).  Since we don’t know y(x+h) we approximate it using unimproved 
Euler, and then feed that into the trapezoid rule.  This leads to the improved Euler do loop below.  Of 
course before you use it you must make sure you initialize everything correctly.
 
> x:=x0; y:=y0; n:=5; h:=(xn-x0)/n;

 := x 0.

 := y 1.0



 := n 5

 := h .2000000000
> for i from 1 to n do
    k1:=f(x,y):          #left-hand slope
    k2:=f(x+h,y+h*k1):   #approximation to right-hand slope
    k:= (k1+k2)/2:       #approximation to average slope
    y:= y+h*k:            #improved Euler update
    x:= x+h:             #update x
    print(x,y,exp(x));
od:  

> 

, ,.2000000000 1.220000000 1.221402758

, ,.4000000000 1.488400000 1.491824698

, ,.6000000000 1.815848000 1.822118800

, ,.8000000000 2.215334560 2.225540928

, ,1.000000000 2.702708163 2.718281828
Notice you almost did as well with n=5 as you did with n=100 in unimproved Euler. 

     One can also use Taylor approximation methods to improve upon Euler; by differentiating the 
equation dy/dx = f(x,y) one can solve for higher order derivatives of y in terms of the lower order ones, 
and then use the Taylor approximation for y(x+h) in terms of y(x).  See the book for more details of this 
method, we won’t do it here.
     In the same vein as ‘‘improved Euler’’ we can use the Simpson approximation for the integral instead 
of the Trapezoid one, and this leads to the Runge-Kutta method.  (You may or may not have talked about
Simpson’s Rule in Calculus, it is based on a quadratic approximation to the function f, whereas the 
Trapezoid rule is based on a first order approximation.)  Here is the code for the Runge-Kutta method.  
The text explains it in section 2.6.  Simpson’s rule approximates an integral in terms of the integrand 
values at each endpoint and at the interval midpoint.  Runge-Kutta uses two different approximations for 
the midpoint value.
     Before you use the loop below you must initialize your values, like you did above.  

> 
> x:=x0; y:=y0; n:=5; h:=(xn-x0)/n;

 := x 0.

 := y 1.0

 := n 5

 := h .2000000000

> for i from 1 to n do
    k1:=f(x,y):              #left-hand slope
    k2:=f(x+h/2,y+h*k1/2):   #1st guess at midpoint slope
    k3:=f(x+h/2,y+h*k2/2):   #second guess at midpoint slope
    k4:=f(x+h,y+h*k3):       #guess at right-hand slope
    k:=(k1+2*k2+2*k3+k4)/6:  #Simpson’s approximation for the 



integral
    x:=x+h:                  #x update
    y:=y+h*k:                #y update
    print(x,y,exp(x));              #display current values
  od:  

> 

, ,.2000000000 1.221400000 1.221402758

, ,.4000000000 1.491817960 1.491824698

, ,.6000000000 1.822106456 1.822118800

, ,.8000000000 2.225520825 2.225540928

, ,1.000000000 2.718251136 2.718281828
> 

Notice how close Runge-Kutta gets you to the correct value of e, with n=5.

   As we know, solutions to non-linear DE’s can blow up, and there are other interesting pathologies as 
well, so if one is doing numerical solutions there is a real need for care.  The text has a number of 
examples of this.  In the solution template which accompanies this handout you are asked to work two 
problems in this vein.  You may also want to use the routines in this handout to do some of your book 
homework problems.


