Math 2280-2

Tuesday Jan 9
The geometric interpretation of a first order differential equation is connected to slope fields. Consider the differential equation

$$
\frac{d y}{d x}=\mathrm{f}(x, y)
$$

The associated slope field in the $x-y$ plane is a field of slopes, where the slope at point (x, y) is given by the formula $f(x, y)$. A solution $y(x)$ to the differential equation above will have a graph $y=y(x)$, the tangent line slope dy/dx will exactly ewqual $f(x, y)$. This means that we can use the slope field to draw the graph of $y(x)$, even if we don't have a formula for y.

Example 1:

```
> with(DEtools):
    #Maple tools for differential equations
    deqtn:=diff(y(x),x)=x-3;
        #Example 1
            deqtn :=\frac{\partial}{\partialx}}\textrm{y}(x)=x-
> dfieldplot(deqtn, y(x),x=0..4,y=-1..3, arrows=line,
    color=black, dirgrid=[30,30]);
```


We can plot the solution to the initial value problem $y(1)=2$ onto our direction field to verify our classwork:
> dsolve(\{deqtn,y(1)=2\},y(x));
\#we did this in class by magic

$$
\mathrm{y}(x)=\frac{1}{2} x^{2}-3 x+\frac{9}{2}
$$

> DEplot (deqtn, $y(x), x=0 . .4,\{[y(1)=2]\}, y=-1 . .3$, color=black, linecolor=black, arrows=line, dirgrid=[30,30]);

Second Example:
$>\operatorname{deqtn}:=\operatorname{diff}(y(x), x)=y(x)-x$;

$$
\text { deqtn }:=\frac{\partial}{\partial x} y(x)=y(x)-x
$$

> dsolve(\{deqtn, $y(0)=0\}, y(x))$;

$$
\mathrm{y}(x)=x+1-\mathbf{e}^{x}
$$

$>$ DEplot (deqtn,y(x), $x=-2.2,\{[y(0)=0]\}, y=-3 . .1$, color=black, linecolor=black, arrows=line, dirgrid=[30,30]);

