
Math 2280-2
Tuesday February 20

Solving DE’s in Maple
Resonance and beading

These notes discuss material from sections 3.5 and 3.6 of the text, in the context of Maple. They may be
helpful when you try to do the Maple project, and are online at our Maple page, go to
www.math.utah.edu/~korevaar/2280spring01, click on the Maple projects and handout link, and then on
the 2280feb20.pdf or 2280feb20.mws links.

Part 0: checking homework problems on Maple
 Here’s a homework problem worked out in Maple, #37 from section 3.5. This problem was a pain to
work by hand, in fact we did it on Friday. For more information on the commands which are used, use
the Help files. I found the syntax for putting higher order derivatives and initial conditions into "dsolve"
under the topic "dsolve IC".
> with(DEtools):
 #DE library of commands

>
f:=x->1+x*exp(x);
 #right hand side
deqtn:= diff(y(x),x,x,x) -2*diff(y(x),x,x)
 + diff(y(x),x) =f(x);
 #differential equation from #37

 := f →x +1 x ex

 := deqtn =− +

∂

∂3

x3 ()y x 2

∂

∂2

x2 ()y x

∂

∂
x

()y x +1 x ex

> ans37:=dsolve({deqtn,y(0)=0,D(y)(0)=0,D(D(y))(0)=1},y(x));
 #getting the expression for second derivative right
 #took a little fiddling. But it still only took a few
 #minutes.

 := ans37 =()y x − + − + +
1

6
x3 ex 1

2
x2 ex 3 x ex 4 ex x 4

Part 1: Undamped, forced oscillators, w and w0 different: If the forcing frequency is not equal to
the natural frequency the general solution to will be the superposition of two cos-sin terms, one
corresponding to the particular solution with angular frequency w, and the other being the general
solution to the homogeneous problem, with angular frequency w0. When w and w0 as well as the
corresponding amplitudes are close, the system exhibits beating. Musicians tune their instruments
using this phenomenon.
> restart:with(DEtools):with(plots):

Warning, the name changecoords has been redefined

> deqtn1a:=diff(x(t),t,t) + w0^2*x(t) = (F0/m)*cos(w*t);
 #this is the case w not equal to w0,
 #I divided the model equation by m

 := deqtn1a =+

∂

∂2

t2 ()x t w02 ()x t
F0 ()cos w t

m
> dsolve(deqtn1a,x(t));
 #general solution, equal to particular
 #solution plus general homogeneous eqtn solution.

=()x t + −_C2 ()cos w0 t _C1 ()sin w0 t
F0 ()cos w t

m ()− +w02 w2

> sol4:=dsolve({deqtn1a,x(0)=0,D(x)(0)=0},x(t));
 #a nice choice of initial conditions

 := sol4 =()x t −
F0 ()cos w0 t

m ()− +w02 w2

F0 ()cos w t

m ()− +w02 w2

> sol5:=subs({w=45,w0=55,F0=50,m=.1},sol4);
 #Example 2 page 210

 := sol5 =()x t − +.5000000000 ()cos 55 t .5000000000 ()cos 45 t
> actual:=plot(rhs(sol5),t=0..3, color=black):
envel1:=plot(sin(5*t),t=0..3,color=black):
envel2:=plot(-sin(5*t),t=0..3,color=black):
display({actual, envel1,envel2}, title=
 "Figure 3.6.3 page 210");

Figure 3.6.3 page 210

–1

–0.5

0

0.5

1

0.5 1 1.5 2 2.5 3
t

Explanation of Beating: Beating is a superposition phenomenon. You observe it in many vibration
problems. Let
> restart:

f:=t->C0*cos(w0*t - a);
g:=t->C1*cos(w1*t-b);

 := f →t C0 ()cos −w0 t a

 := g →t C1 ()cos −w1 t b
Then beating has to do with the difference (or sum) of f and g. To be consistent with the example
above, we consider the difference
> h:=g-f;
h(t);

 := h −g f

−C1 ()cos −w1 t b C0 ()cos −w0 t a

Then if the two amplitudes C0 and C1 are close, and if the two frequencies w0 and w1 are close, there
will be long time intervals in which h=g-f essentially equals twice one of them, followed by long time
intervals in which their difference is essentially zero. In the example above, C0=C1=1/2 and a=b=0.
In fact, if we set a=b=0 and C1=C2=C, then we get
> h1(t):=t->C*(cos(w1*t)-cos(w0*t));

 := ()h1 t →t C ()−()cos w1 t ()cos w0 t
Mathematically, beating is explained by defining the average angular frequency w=(w0 + w1)/2, and
half the difference dw=(w1-w0)/2, so that h1(t) is given by
> h1:=t->C*(cos((w+dw)*t)-cos((w-dw)*t));

 := h1 →t C ()−()cos ()+w dw t ()cos ()−w dw t
which we can expand using the cosine addition angle formula:
> expand(h1(t),trig);

−2 C ()sin t w ()sin t dw
So we see that this difference of cosines is actually a product of sines. If dw is small, then we can
consider 2Csin(t*dw) as a slowly varying amplitude (with large period T=2*Pi/dw), and this will create
the "envelope" for the more rapidly oscillating sin(tw) term. In our example the envelope was created
by sin(5t), and the rapid oscillations were created by sin(50t).

Part 2: Resonance in undamped, forced harmonic oscillators, when w=w0: In class we used the
method of undetermined coefficients to solve the forced oscillator, with no damping, in the case that the
driving frequency w exactly equals the natural frequency w0. Well, we found a particular solution. We
were considering the DE
> deqtn1:=diff(x(t),t,t) + w0^2*x(t) = (F0/m)*cos(w0*t);
 #I have again written k/m = w0^2

 := deqtn1 =+

∂

∂2

t2 ()x t w02 ()x t
F0 ()cos w0 t

m
> sol1:=dsolve(deqtn1,x(t));
 #general solution

 := sol1 =()x t + + +_C1 ()sin w0 t _C2 ()cos w0 t

1

2
F0 t ()sin w0 t

w0 m

1

2
F0 ()cos w0 t

m w02

You see there the particular solution which we found, namely xp(t):
> xp:=t->(1/2)*F0*t*sin(w0*t)/(w0*m);

 := xp →t
1

2

F0 t ()sin w0 t

w0 m
If we wanted to solve the general initial value problem, we would have set things up this way:
> sol2:=dsolve({deqtn1,x(0)=x0,D(x)(0)=v0},x(t));
simplify(rhs(%));

 := sol2 =()x t − + +
v0 ()sin w0 t

w0

1

2

()−F0 2 x0 m w02 ()cos w0 t

m w02

1

2
F0 t ()sin w0 t

w0 m

1

2
F0 ()cos w0 t

m w02

1

2

+ +2 v0 ()sin w0 t m 2 ()cos w0 t x0 m w0 F0 t ()sin w0 t

w0 m
You can see from this form of the solution that xp(t) solves the initial value problem x0=v0=0, i.e. the
system initially at rest. The other two terms give the effects of non-zero x0 and v0, respectively.
 We can now plug in any values for the various parameters, using the "subs" command. For example,
suppose F0=1, m=1, w0=3, x0=0 and v0=0. We could dsolve with those particular values, or we can
plug them into sol2:
> sol3:=subs({F0=1,m=1,w0=3,x0=0,v0=0},sol2);

 := sol3 =()x t
1

6
t ()sin 3 t

>
Graphing solutions from dsolve: If we want to graph this x(t) we cannot just try to plot x(t), because it
hasn’t actually been defined yet. We have to extract it from the right hand side of sol3. One way is
manually type in the formula. Or, use your mouse to highlight it (in this case the 1/6*t*sin(3*t)) and
then paste it into the "plot" command. Or, plot "rhs(sol1)".
> with(plots):
 #plotting library

> plot(rhs(sol3),t=0..15, color=black);
 #A classic picture of resonance.

–2

–1

0

1

2

2 4 6 8 10 12 14t

The Transition from beating to resonance. If the driving frequency w1 is allowed to vary, and
approaches the natural frequency w0, then the beating packets will stretch out since T=2*Pi/dw will
approach infinity. The beating picture will transform into the resonance picture. For example, consider
the following initial value problem, which is like the one we just , except that the driving angular
velocity is 3.1 instead of 3:
> restart:with(DEtools):with(plots):
Warning, the name changecoords has been redefined

> deqtn:=diff(x(t),t,t) + 9*x(t)=cos(3.1*t):
dsolve({deqtn,x(0)=0,D(x)(0)=0});

=()x t − +
100

61

cos

31

10
t

100

61
()cos 3 t

> plot(-100/61*cos(31/10*t)+100/61*cos(3*t),
 t=0..15, color=black);
 #this will look very close to previous picture

–2

–1

0

1

2

2 4 6 8 10 12 14t

This looks like resonance, like the picture we just made. But on a longer time scale we see that it is
actually beating, with the beating period equal to:
> evalf(2.0*Pi/(0.05));

125.6637062
> plot(-100/61*cos(31/10*t)+100/61*cos(3*t),
 t=0..62.8, color=black);
 #half(?) a beating period

–3

–2

–1

0

1

2

3

10 20 30 40 50 60t

Explanation: Mathematically, if we consider the undamped spring with natural frequency w0, then
from our work in example 2 we know the solution to the initially at rest initial value problem is
> restart:
x1:=t->(F0/(2*m*w0))*t*sin(w0*t);

 := x1 →t
1

2

F0 t ()sin w0 t

m w0
And for w=w0+dw the corresponding solution (from example 3) is

> x2:=t->(F0/(m*((w0+dw)^2 - w0^2)))*(cos(w0*t) - cos((w0+dw)*t));

 := x2 →t
F0 ()−()cos w0 t ()cos ()+w0 dw t

m ()−()+w0 dw 2 w02

If you expand x2(t), first using cos addition, and then doing a MacLaurin approximation (Taylor), about
dw=0, you get an approximation for x2(t) which will be valid as long as (dw)*t is small. This is a good
exercise to do by hand. Here’s the answer from Maple:

> simplify(x2(t),trig);

F0 ()−()cos w0 t ()cos ()+w0 dw t

m dw ()+2 w0 dw
> expand(%,trig);

− +
F0 ()cos w0 t

m dw ()+2 w0 dw

F0 ()cos w0 t ()cos t dw

m dw ()+2 w0 dw

F0 ()sin w0 t ()sin t dw

m dw ()+2 w0 dw
> taylor(%,dw=0,2);
 #second arg says expand about dw=0,
 #third arg says compute expansion through
 #first order

+
1

2

F0 ()sin w0 t t

m w0
()O dw

(When I try taylor right away on x2(t) Maple gives me an error message, because a dw in the
denominator has to be canceled with a dw in the numerator, before setting dw=0; I don’t know why first
simplifying and then expanding let’s Maple see what to do, but there are a lot of things in life that I don’t
understand.) The final answer shows that for small dw (and small dw*t), x1(t) is the first order
approximation for x2(t). In other words the beating picture looks like the resonance picture, for t in a
fixed interval.
>

Part 4: Forcing damped harmonic oscillators. When c>0 (damping), the homogeneous part of the
general solution dies out, no matter what the initial conditions are. Therefore this part of the solution is
called TRANSIENT. The part of the solution which is a linear combination of cos(wt) and sin(wt) (and
which we get by the method of undetermined coefficients as a particular solution), persists, and is called
the STEADY STATE solution. No matter what the initial conditions are, you will always end up with
the same steady state solution for a given spring system! (WHY?) Let’s study these phenomena, by
doing Example 6, page 215.

> restart:with(DEtools):with(plots):
Warning, the name changecoords has been redefined

> deqtn:=diff(x(t),t,t) +2*diff(x(t),t) + 26*x(t) = 82*cos(4*t);
dsolve({deqtn, x(0)=6,D(x)(0)=0});

 := deqtn =+ +

∂

∂2

t2 ()x t 2

∂

∂
t

()x t 26 ()x t 82 ()cos 4 t

=()x t − + +5 ()cos 4 t 3 e
()−t

()sin 5 t 4 ()sin 4 t e
()−t

()cos 5 t
So we see the transient solution (the terms with exp(t) in them), and the steady periodic solution. We
could convert the steady state solution into Ccos(4t-a), if we wanted to, as is done on page 348. For our
graph it is enough to notice that the amplitude of the steady state solution is
> C:=sqrt(5^2+4^2);
evalf(%);

 := C 41

6.403124237
Here’s a plot of the solution, decomposed into transient and steady state pieces. Notice we got the
steady-state amplitude right.
> xtrans:=t->-3*exp(-t)*sin(5*t)+exp(-t)*cos(5*t):
xsp:=t->5*cos(4*t)+4*sin(4*t):
plot1:=plot(xtrans(t),t=0..4,color=black):
plot2:=plot(xsp(t),t=0..4,color=black):
plot3:=plot(xtrans(t)+xsp(t),t=0..4,color=black):
display({plot1,plot2,plot3});

–6

–4

–2

0

2

4

6

1 2 3 4
t

Practical resonance. A damped system can’t resonate completely, but different driving frequencies will
effect the amplitude of the steady state solution. For small "c" one expects the steady-state amplitude to
get large with driving frequency near to that of the natural frequency of the system. This principal can
be a useful tool in engineering: find the natural frequencies of systems in the theoretical case of c=0, and
be sure to damp frequencies near those in the actual physical problem. For our forced oscillator it is not
too hard to calculate the amplitude of the steady state solution, as the text does on page 346. Doing this
by hand is a good exercise; you may get more out of it than you get out of letting Maple do the work:

> restart:with(linalg):with(plots):

Warning, the protected names norm and trace have been redefined and unprotected

Warning, the name changecoords has been redefined

> xp:=t->A*cos(w*t) + B*sin(w*t);

 := xp →t +A ()cos w t B ()sin w t
> eqtn1:=m*diff(xp(t),t,t)+c*diff(xp(t),t) + k*xp(t)=F0*cos(w*t);

eqtn1 :=

+ +m ()− −A ()cos w t w2 B ()sin w t w2 c ()− +A ()sin w t w B ()cos w t w k ()+A ()cos w t B ()sin w t =
F0 ()cos w t

Equating coefficients for coswt and sinwt leads to the system:

> what:=solve({-m*A*w^2 + c*B*w + k*A = F0,
 -m*B*w^2 -c*A*w + k*B =0},{A,B});

 := what { },=B
c w F0

+ − +c2 w2 m2 w4 2 m w2 k k2 =A −
()−m w2 k F0

+ − +c2 w2 m2 w4 2 m w2 k k2

> what[1];

=B
c w F0

+ − +c2 w2 m2 w4 2 m w2 k k2

> rhs(what[1]);

c w F0

+ − +c2 w2 m2 w4 2 m w2 k k2

> amplitude:=simplify(sqrt(rhs(what[1])^2 + rhs(what[2])^2));
 #this is the formula (21) on page 346.

 := amplitude
F02

+ − +c2 w2 m2 w4 2 m w2 k k2

Continuing example 6 on page 347:
> examp6:=subs({F0=82,c=2,k=26,m=1},amplitude);

 := examp6 6724
1

− + +48 w2 w4 676
> amp:=t->subs(w=t,examp6);

 := amp →t ()subs ,=w t examp6
> amp(t);

6724
1

− + +48 t2 t4 676
> plot(amp(w),w=0..20, color=black,
 title="figure 3.6.9 page 216");
 #practical resonance, page 216

>

figure 3.6.9 page 216

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20w

> solve(diff(amp(w),w)=0,w);
 #find w value at max amplitude

, ,0 2 6 −2 6
> evalf(2*sqrt(6));evalf(amp(2*sqrt(6)));
 #practical resonance

4.898979486

8.200000000
> evalf(sqrt(26));
 #natural frequency of undamped system

5.099019514
END!

