
MATH 2280-1 
Mass-Spring systems

October 28, 2008

This handout covers section 5.3 and might help for the Earthquake exploration you’re doing at the end of 
that section. section 5.3 of the text, on pages 326-328.  You are mostly on your own for this project, but 
here is a small example of a spring system worked out on Maple, so that you can get an idea about useful 
commands to use.  This is the example we set up yesterday, but we didn’t get very far.  Consult 
yesterday’s notes as we go through this example.

This is example 1 on page 321 of Edwards-Penney.  Initially it is an unforced system with two masses 
and two springs, as you can see from the description in EP.  We can write the system as Mx’’=Kx, 
where M is the ‘‘mass matrix’’, K is the ‘‘spring matrix’’, and x is the displacement vector.  Following 
the book’s notation, we enter

> with(linalg):with(plots):with(DEtools): #tools for project
> M:=matrix([[2,0],[0,1]]);

K:=matrix([[-150,50],[50,-50]]);

A:=evalm(inverse(M)&*K);

 := M










2 0

0 1

 := K










-150 50

50 -50

 := A










-75 25

50 -50
Then the system can also be written as x’’=Ax; .  Now, compare to Tuesday October 27 notes, to see 

how we found the 4-dimensional solution space to this homogeneous system of two second order linear 
DEs.

As explained there, the eigenvectors of A determine fundamental modes, and the corresponding negative 
eigenvalues are the (opposites) of the squares of the corresponding angular frequencies:
> eigenvectors(A);

,[ ], ,-100 1 { }[ ],-1 1 [ ], ,-25 1 { }[ ],1 2
Therefore, the natural frequencies of this system are the 10 and 5, and the two fundamental modes 
correspond to the masses moving in opposite directions (with equal amplitudes and angular  frequency 
10) and in parallel directions (with amplitude ratio of two and angular frequency 5).  

     Now, let’s consider the forced system with force vector equal to cos(wt)[0,50], i.e. the second mass is 
being forced periodically.  In other words, the system Mx’’=Kx + F, where F=cos(wt)[0,50] ; this is 
Example 3 on  page 327, and we worked it out in today’s (Tuesday) notes.  We follow the method 
described on that page to find a particular solution to the forced oscillation problem, of the form given 
by equation (31).  Here is the Maple version of the details summarized in the text, and worked out in 
class:



> F0:=evalm(inverse(M)&*vector([0,50]));

    #The F0 in the normalized equation (32), page 327

Iden:=array(1..2,1..2,identity);

    #the 2 by 2 identity matrix

Aleft:=omega->evalm(A + omega^2*Iden);

    #the matrix function multiplying

    #c on the left side of (32)

c:=omega->evalm(-inverse(Aleft(omega))&*F0);

    #the solution vector c(omega) to (32),

    #obtained by multiplying both sides of equation

    #(32) on the left, by the inverse to Aleft

 := F0 [ ],0 50

 := Iden ( )array , , ,identity  .. 1 2  .. 1 2 [ ]

 := Aleft →ω ( )evalm +A ω2 Iden

 := c →ω ( )evalm − ( )‘&*‘ ,( )inverse ( )Aleft ω F0
> c(omega); #see equation (35) page 323









,

1250

− +2500 125 ω2 ω4 −
50 ( )− +75 ω2

− +2500 125 ω2 ω4



The vector c(w) above, times the oscillation cos(wt), is a particular solution to the forced oscillation 
problem we are considering.  If we assume that our actual problem has a small amount of damping, then 
we expect that this particular solution is very close to the steady periodic solution to the damped 
problem.  See the discussion on page 327.  We can study resonance phenomena for these slightly 
damped problems by plotting the maximum amplitude of the steady state solutions to the undamped 
problems.  That would be the maximum absolute value of c1 and c2 above.  Use the Maple command 
‘‘norm’’ to measure this maximum amplitude:
> norm(c(omega));









max ,

1250

− +2500 125 ω2 ω4 50
− +75 ω2

− +2500 125 ω2 ω4

Another way to measure the size of c(omega) is to take its Euclidean magnitude, which is the command
> norm(c(omega),2);

50 +
625

− +2500 125 ω2 ω4
2

− +75 ω2

− +2500 125 ω2 ω4

2

(You will use the first command in the Earthquake project, which perhaps makes the most sense since it 
will be measuring the maximum amplitude that any floor oscillates.)  The following picture illustrates 
that the maximum amplitude of the particular solution blows up when omega is near the two natural 
angular frequences.  Thus, in the slightly damped problem, one would experience practical resonance in 
the steady periodic solution.
> plot(norm(c(omega)),omega=0..15,amplitude=0..15,

       numpoints=200,color=‘black‘);
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This is qualitatively the picture on page 327, figure 5.3.10, although they plotted the Euclidean 
magnitude of c(omega) rather than the maximum amplitude.  Notice how we get Maple to label the axes 
as desired

      We can get a plot of resonance as a function of period by recalling that 2*Pi/T=omega:
> plot(norm(c(2*Pi/period)),period=0.1..3,amplitude=0..15,

numpoints=200,color=‘black‘);
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COMMENTS FOR THE EARTHQUAKE PROJECT:  
(1)  Students are often confused by the forcing term in equation (2) of page 331, namely 
> E*(omega)^2*cos(omega*t)*b;

E ω2 ( )cos ω t b
where b is the transpose of  [1,1,1,1,1,1,1].  They ask, ‘‘how can the earthquake be forcing all seven 
stories, it seems like it’s just shaking the bottom one.’’  Well, the students are correct, but so is 
Edwards-Penney.  The authors talk about an ‘‘opposite inertial force’’ being the reason for this forcing 
term and  there’s a detailed discussion of this on page 4 of today’s notes.   Here’s a brief summary. 
Think of the ground as the zeroth story.  In the rest frame it is shaking with oscillation Ecos(wt).  And so 
its acceleration is its second time derivative, namely -E*w^2*cos(wt).  If you write down the 
inhomogeneous system of EIGHT second order DE’s for the accelerations of stories zero thru seven, the 
forcing (well, accelerating) term is -E*w^2*cos(wt)*[1,0,0,0,0,0,0,0], as you would expect.  Call the 
solution 8-vector to this system y(t), then see what the shaking looks like to someone on the ground by 
letting  x(t)=y(t)-E*cos(wt)*[1,1,1,1,1,1,1,1].  Then the zeroth story component of x(t) will be identically 
zero, and the other seven components will satisfy equation (2) on 331, exactly as the authors claim.

Very important note:
(2)  For large matrices the eigenvect command won’t work well unless you enter at least one decimal 
number; if all entries are rational numbers (expressed without decimal points), Maple tries to find the 
eigenvalues and eigenvectors algebraically and exactly, instead of numerically, and often fails. Make 
sure at least one of your matrix entries has a decimal point in it.  


