Math 2270-004 Week 9 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material in 4.6-4.7, 5.1-5.2
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(+_4.5 General theorems about finite dimensional vector spaces, bases, spanning sets, line@
independent sets and subspaces.
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Monday Review!

We've been studying vector spaces, which are a generalization of R”. They occur as subspaces of R"; also
as vector spaces and subspaces of matrices, and of function spaces.

We've been studying linear transformations T : V— W between vector spaces, which are generalizations
of matrix transformations 7 : R” —R™ given as T'(x) = 4 x.

For an m x n matrix 4 there are two interesting subspaces: Nul4A={x € R*:Ax=0} and
ColA={bEeR":b=4Ax,x € R"} = span{gl,gg, ...gn} . (Here we expressed 4 = [gl a, ...gn] in
terms of its columns.) Through homework and food for thought questions we've understood the rank+

nullity Theorem, that dim Nul A + dim Col A = n. This theorem follows from considerations of the
reduced row echelon form of A.

In the Friday food for thought questions this past Friday we realized there's a third interesting subspace
associated to the matrix 4, namely Row 4, which is the subspace in R” spanned by the rows of 4. We'll
see the fourth and final subspace associated with 4 tomorrow, and what how these four subspaces are
connected to the domain and codomain geometry of the transformation 7'(x) = A x. (This is section 4.6,
which we've been secretly thinking about for the past week. We'll utilize many of these ideas again in
Chapter 6, e.g. section 6.5.)

We've defined kernel T and range T for linear transformations 7": V'— W, generalizing Nul A and Col A
for matrix transformations.

We've defined what it means for a linear transformation 7": ¥'— W to be an isomorphism, and checked that

in this case the inverse function 7' : W— Vis also a linear transformation (isomorphism) - generalizing
the notion of invertible matrix transformations 7 : [R” —[R” that are given as 7'(x) = 4 x, with

-1 -1
I (g)=4 y.

With a basis 3 = { Y,Y, ¥ } for a vector space V' we can define the coordinate transformation

isomorphism 7 : V—[R"

‘
©

T(cly1 te, v +..tc zn): ' =[v]B
C}’l

and use these coordinate systems to answer questions about V.



There is a circle of ideas related to linear independence, span, and basis for vector spaces, which it is good
to try and understand carefully. That's what we'll do today. These ideas generalize (and use) ideas we've
already explored more concretely, and facts we already know to be true for the vector spaces . (A
vector space that does not have a basis with a finite number of elements is said to be infinite dimensional.
For example the space of all polynomials of arbitrarily high degree is an infinite dimensional vector space.
We often study finite dimensional subspaces of infinite dimensional vector spaces.)

I Theorem 1 ;\constructing a basis from a spanning set): Let V" be a vector space of dimension at least one,
mn{v v 1=V

=1° 227 o
Then a subset of the spanning set is a basis for V. (We followed a procedure like this to extract bases for
Col A.)

ng \f {C’,\,.-\TP\ s ot a\lveaaa\:} eh&wc&owjr,
V‘QOV‘M’H*L SE'\' So "H«a*

¥ AT adea AT 3
V? A\\”\ +d1 lj * P*\VP'l {(J:E -[-4:’&;2:1[’\’\;{
'y o &by
ok ooy s

= vl V. 4+ C_V
Q‘\]\ A C"VZ ‘\ - "' CF-\ P-] P r | N
- D =~ v v
= C‘ V\ - (2 V) } - + C?"\VP—\ + CF (J\\\,\ t szl - )‘17,_ ‘\,P—l)

é < av\{T/’\,\Fl;,__\—/; 't]
C/‘S\A‘\'{v\v\ﬁ,rd_au'k M{' U{CJ(W'S uw‘\‘ Pw-aiva
g_q+ 16 wda —\) PR, o 2N Y= Sana S?ahjﬂ\ LLSGV\,W’\A’\
% besiq * [ 1)

Theorem 2 Let ¥ be a vector space, with basis § = { b.b, ..b } Then any set in } containing more

than n elements must be linearly dependent. (We used reduced row echelon form to understand this in [R”.)
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Theorem 3 Let V be a vector space, with basis = {Ql, 22, Qn } Then no set o0 = {Ql, a,, .. Qp} with

p < nvectors can span V. (We know this for R”.)
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Theorem 4 Let V be a vector space, with basis = {Ql, 22, Qn } Leto = {gl, a,, .. gp} be a set of

independent vectors that don't span V. Then p < n, and additional vectors can be added to the set o to
create a basis { 4,4y 4, -4 } (We followed a procedure like this when we figured out all the
subspaces of R3.)
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Theorem 5 Let Let 7 be a vector space, with basis = {Ql, b, ..b, } Then every basis for /' has exactly
n vectors. (We know this for R”.)
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Theorem 6 Let Let V' be a vector space, with basis § = {Ll, LQ, } If a= {gl, a,, .. Qn} is

..b
b
a, } = V, then the set o is automatically

another collection of exactly » vectors in V, and if span { a,.4,, ..
linearly independent and a basis. Conversely, if the set { a,.4, .4 } is linearly independent, then
span { 4,4, .4 } = Vis guaranteed, and o is a basis. (We know all these facts for " from reduced
row echelon form considerations.)
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Corollary Let Let V' be a vector space of dimension n. Then the subspaces of /" have dimensions
0,1,2,.n—1,n (Weknow this for k”.)
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Remark We used the coordinate transformation isomorphism between a vector space V' with basis
B= { b T’ 22, ..h } for Theorem 2, but argued more abstractly for the other theorems. An alternate
=n

(quicker) approach is to just note that because the coordinate transformation is an isomorphism it preserves
sets of independent vectors, and maps spans of vectors to spans of the image vectors, so maps subspaces
to subspaces. Then every one of the theorems above follows from their special cases in R”?, which we've
already proven. But this shortcut shortchanges the conceptual ideas to some extent, which is why we've
discussed the proofs more abstractly.
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4.6 The four subspaces associated with a matrix. the rank of a matrix.
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Let A be an m x n matrix. There are four subspaces associated with 4. To keep them straight, keep in
mind the associated linear transformation

T:Rr—Rm givenby T(x) =4 x.

And, as usual, we can express 4 in terms of its columns, 4 = [Q a, ..a ] . Then the two subspaces

1 £
we know well are

ColAZSpan{gl,gz, ...gn} c Rm

NulAd={x€R':4x=0} S R".
And, in your homework you already figured out the "rank + nullity" theorem, that
dim(Col A) + dim(NulA) =n. =% clumng = dina dowain,
The reason for this is that if p is the number of pivots in the reduced row echelon form of 4, then

dim(ColA) =p
dim(Nul A) =n — p.

The number of pivots, i.e. dim (Col A) is called the rank of the matrix 4. What are the other two
subspaces and why do we care? Well,



«  First, recall the geometry fact that the dot product of two vectors in R” is zero if and only if the vectors
are perpendicular, i.e.

u-y=0 ifandonlyifu 1 y.

(Well, we really only know this in R? or R3 so far, from multivariable Calculus class. But it's true for all
k", as we'll see in Chapter 6.) So for a vector x € Nul A we can interpret the equation
A4x=0

as saying that x is perpendicular to every row of 4. Because the dot product distributes over addition, we
see that each x € Nul A is perpendicular to every linear combination of the rows of 4. This motivates the
next subspace associated with 4, namely the rowspace. In other words, if we express A in terms of its
rows,

R, R, %
R, 2= |R%
A= Az =
—
R, R. %

then ‘.{. AJ - 8
Row A := span{EI,R Km} c R, __;( I {&d,\ PMEL A

And, Row A 1 Nul A.

As we do elementary operations on the rows of 4 we don't change their span, so we get a great basis for
Row A by using the non-zero rows of rref (4)...as in your food for thought this past Friday, and this
week's homework. So, the dimension of Row(4) is p, the number of pivots in the reduced matrix. So in
the domain R”, we have this picture:

dim(NulA)=n—p
dim(RowA)=p o
NulA 1 Row A.

The final subspace lives in the codomain R, along with Col A. Well, Col A = Row AT And so Nul AT is
the final subspace. Since A" has m columns an p pivots, there are m — p free parameters when we solve
ATy =0, so dim (Nul AT) =m — p and in the codomain R” we have this picture:

Col A= Row(4")
dim (Row AT) =p
dim(NulAT) =m-—p
Nul A" 1 Row A”.
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Here's a schematic of what's going on, stolen from the internet. The web site I stole it from looks pretty
good....

http://www_.itshared.org/2015/06/the-four-fundamental-subspaces.html




More details on the decompositions .... In the domain R” , the two subspaces associated to 4 are Row A
and Nul A. Notice that the only vector in their intersection is the zero vector, since

x € RowA N Nul A =x°+x=0 = x=0.

So, let

{ll’—Q’ lp} be a basis for Row A4

{yl,v LY _p} be a basis for Nul A4.

Then we can check that set of n vectors obtained by taking the union of the two sets,

{wpuy, o, v,v,, v,
is actually a basis for R”. This is because we can show that the n vectors in the set are linearly
independent, so they automatically span R” and are a basis: To check independence,, let

c, u, + czgz-l— ...-I—cplp-l— dlyl + d222+ ...—I—dn_pzn_p:Q.
then
c, u, + Czlz—" ...+cpu = —dlzl - dzzz' ...—dn_pzn_p.

Since the vector on the left is in Row A and the one that it equals on the right is in Nul A4, this vector is the
Zero vector:

clll—i-czug—l— ..+cplp=Q= —dlzl—dzgz— ~d, v
Since {ll’lz’ gp} and {21, Yy, ¥, _p} are linearly independent sets, we deduce from these two
equations that
c=c, = =cp=0, d=d,= Zdn_pZO

Q.E.D.
So the picture on the previous page is completely general, also for the decomposition of the codomain.
One can check that the transformation 7'(x) = A4 x restricts to an isomorphism from Row A4 to Col 4,
because itis 1 — 1 on these subspaces of equal dimension, so must also be onto. So, T squashes Nul 4,
and maps every translation of Nul/ A to a point in Col A. More precisely, Each
xe R

can be written uniquely as
x=u-+y withu € RowA, y € Nul A.

and

T T(x) € Col (A).

=

ty)=T(u)+T(»)
As sets,
T({w+ Nuld})=T(un).
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4.7 Change of basis
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The setup: Let V' be a finite dimensional vector space, with two bases,
B = {b b, ..b }

Zp Ly o Ly
C= {21’92’ gn}

64,

How do we change from the coordinate system of the B basis to that of the C basis? If we can express the
B vectors in terms of the C vectors it's straightforward:

Example Let B = {Ql, b, }, C= { < 92} be bases for the two-dimensional vector space V. Suppose
b =4¢ +g
b, £ T84

=-6¢c, +
X
Let [v]g= . Find [»]c.
XZ <
Solution:
\ v=x Ll +x222
= [2]c =[x 4 +x,b,]- ¢
[t k]

4 -6 X
v =
[]c L1

Note that the coordinate transition matrix| P ¢ < 8 |would always given by
[[&1]c [&2]c]-

no matter what the particular coordinate vectors [ b, ]C , [ b, ]C are.



Exercise 1 Consider V= {a + bt} , the space of polynomials in 7 of degree < 1. Let C= {1, ¢} be the

"standard basis". and let B = {1 +¢1— t} Be an alternate basis

o3 S
la) Find the transition matrix Pc s -

[

1b) Suppose g(t) € Vwith [g] 3 | Find [¢]

c by using the transition matrix
to the direct method (which shoyld be just as easy in this simple case)
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1c) The transition matrix in the reverse direction must be the inverse of the original transition matrix. Find

Pg—c= (Pc—5)"

Lx]y&: P [x w

pec CC B Remc

-1
= (o = [0 (-] -
P .= 59 P = S
B [\ _'] 0 E)4.—C [] :\ 4 ‘:\
(11
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1d) Suppose r(t) =1+ 7t Find [r]p and check your work.

4 q - P L
SOOI

=3[0

-~

C—Q
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Change of coordinate transition matrices work the same in every dimension.
Let V' be a finite dimensional vector space, with two bases,

B = {LI,LQ, Ln}

C= {_1,_2, gn} .

Then for

x, (B M[FL/ . /
h\l«H’\?lACA "

4 X U;X C"F
(6, (53, (8, ]
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A special case of change of coordinates is when the vector space V'is R” itself. In that case there are two
ways to find the coordinate transition matrices. Let

B =1(b.b, -.b,)
C={er g g}
be two bases for R”.
Method 1: Let
E={e. e, ..e}

be the standard basis. As we discussed previously and as a special case of our current discussion, since
fory € R, [v]g=»

—

P@ = Pe<—s=1[b.b, ...b]

PE<—C=[£1,QQ, gn]

Since composition of matrix transformations corresponds to matrix multiplication, the transition matrix
from B to C coordinates can be computed via the standard coordinate transitéd matrices:

Pc—s=Pc—ePe—s=(Pe—c)y' Pes
— ———

Method 2: Direct method. We know

Pes = [t () [Bc] o

Consider the columns of the transition matrix as unknowns - as when we were finding the columns of
inverses matrices by a multi-augmented matrix procedure to solve 4 X= 1. In this case, and illustrating

with n = 2 for simplicity,
Pecs = [[b]c [ |-

The first column

satisfies



4 =b
(€S | ”, 1 *
and the second column
o
2] z,
satisfies
o
Co] . |~k

We solve for the two columns with a double augmented matrix reduction:

1 0fy, 2z

0 1fy, z,

(And this generalizes to R".)



Exercise 2 Test the two methods for finding

Pc—&

where
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« 5.1-5.2 Eigenvectors and eigenvalues for square matrices
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Eigenvalues and eigenvectors for square matrices.
To introduce the idea of eigenvalues and eigenvectors we'll first think geometrically.

Example Consider the matrix transformation 7 : R? —[R? with formula

x| 310 ]| % 3 o] _ [?%x
T = =X, + x, .
X, 0] 1| x, 0 1 X,
Notice that for the standard basis vectors ¢, = [1, O]T, e,=10,1 ]T
(&)= -
The facts that 7'is linear and that it transforms ¢, e, by scalar multiplying them, lets us understand the

geometry of this transformation completely:

X
1

T :T(x

X 1 272 2

! g1+xe):x1T(g1)+xT(g2)

=x1(3g1) + xz(lgz) .
In other words, T stretches by a factor of 3 in the € direction, and by a factor of 1 in the e direction,

transforming a square grid in the domain into a parallel rectangular grid in the image:

o\ o x‘l‘ o

uujg—\ 1 - = |
) i X




Definition: If An < and if A y= A y for a scalar A and a vector v # 0 then y is called an eigenvector of 4,

and A is called the eigenvalue of v . (In some texts the words characteristic vector and characteristic value
are used as synonyms for these words.)

+ In the example above, the standard basis vectors (or multiples of them) are eigenvectors, and the
corresponding eigenvalues are the diagonal matrix entries. A non-diagonal matrix may still have
eigenvectors and eigenvalues, and this geometric information can still be important to find. But how do
you find eigenvectors and eigenvalues for non-diagonal matrices? ...

Exercise 2) Try to find eigenvectors and eigenvalues for the non-diagonal matrix, by just trying random
input vectors x and computing 4 x.

x| A%
&)
’)
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How to find eigenvalues and eigenvectors (including eigenspaces) systematically:

If

where [ is the identity matrix. .
< (A—A1)p=0. | want V € Nl (A"XD
Lv#5
As we know, this last equation can have non-zero solutions y if and only if the matrix (Az — A1) is not
mvertible, 1.e. -~
atd /‘\’Al "fi‘_

e det(A—\1)=0. wedg b T

So, to find the eigenvalues and eigenvectors of matrix you can proceed as follows:

«  Compute the polynomial in A

p(\) =det(4A—21) .= O ot s

If4 then p(A ) will be degree n. This polynomial is called the characteristic polynomial of the matrix
nXxn
A.

. kj can be an eigenvalue for some non-zero eigenvector v if and only if it's a root of the characteristic
polynomial, i.e. p ( 7»/.) = 0. For each such root, the homogeneous solution space of vectors y solving
(A — AT ) v=0 .
J
will be eigenvectors with eigenvalue kj. This subspace of eigenvectors will be at least one dimensional,

since (A — 7»]. 1 ) does not reduce to the identity and so the explicit homogeneous solutions will have free

parameters. Find a basis of eigenvectors for this subspace. Follow this procedure for each eigenvalue, i.e.
for each root of the characteristic polynomial.

Notation: The subspace of eigenvectors for eigenvalue kj is called the A? eigenspace, and we'll denote it by

E7L= 3 The basis of eigenvectors is called an gigenbasis for Ek .
j *



Exercise 3) a) Use the systematic algorithm to find the eigenvalues and eigenbases for the non-diagonal
matrix of Exercise 2.
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b) Use your work to describe the geometry of the linear transformation in terms of directions that get
stretched:

A:

IHRb
T = :
X, 1 2] x,
Y
AT-23 =0 =
(ﬂ-’ﬂ)d“- O (AT = . ‘ = (-2 -2
T s = [ -sAAEN -2
IA“wll:Q ' - )\'L_sl.}l-t
A=Y ‘ @ -y ) _’®
1) = D -l 2|0 . Azl X=9
(- 2l : Na{ﬁ—’ﬂ:]# §3y

0
b
| -2|0
vl—_zto " A ["‘.& ) ? ;XU'X :[J'X \/
v,z t -
.4 E} basis fo E;k’-\ - i[f]}
\m%wm e didv b ek
-Fot/kak " N
;M/S-{-:& ,\Q and ‘lgj:z;j; ‘

Aoy v Loz



Exercise 4) Find the eigenvalues and eigenspace bases for

4 -2 1
B=12 01
2 -2 3

(1) Find the characteristic polynomial and factor it to find the eigenvalues.
(i1) for each eigenvalue, find bases for the corresponding eigenspaces.

(111) Can you describe the transformation 7'(x) = Bx geometrically using the eigenbases? Does det(B)
have anything to do with the geometry of this transformation?

V‘M = - (A-2) (A3)



Y our solution will be related to the output below:

& Wolfram

eigenvalues{{4,-2,1},{2,0,1}k2,-2,3}}

|
[N

[SIINENN
o

]

w

eigenvalues [

~
Il
w

Il
NN

P
& 5

vi=(1,11

va=1(-1,0,2)

vz = (1,10

In all of our examples so far, it turns out that by collecting bases from each eigenspace for the matrix
A, and putting them together, we get a basis for R? . This lets us understand the geometry of the

nXxn
transformation
T(x)=Ax
almost as well as if 4 is a diagonal matrix. This is actually something that does not always happen for a
matrix 4. When it does happen, we say that 4 is diagonalizable. Here's an example of a matrix which is
NOT diagonalizable:

Exercise 5: Find matrix eigenvalues and eigenspace basis for each eigenvalue, for
32
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Explain why there is no basis of [R? consisting of eigenvectors of 4.

A:




