
Math 2270-004  Week 9 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  4.6-4.7, 5.1-5.2   

Mon Mar 5
       4.5  General theorems about finite dimensional vector spaces, bases, spanning sets, linearly 
independent sets and subspaces.
     

Announcements: 

Warm-up Exercise:

 



Monday Review!   

We've been studying vector spaces, which are a generalization of n.  They occur as subspaces of n; also
as vector spaces and subspaces of matrices, and of function spaces.

We've been studying linear transformations T : V W between vector spaces, which are generalizations 
of matrix transformations T : n m given as T x = A x.

For an m n matrix A there are two interesting subspaces:  Nul A = x n : A x = 0  and 
Col A = b m : b = A x, x n  = span a1, a2, ... an  . (Here we expressed A = a1 a2 ... an   in 
terms of its columns.)   Through homework and food for thought questions we've understood the rank+
nullity Theorem, that dim Nul A  dim Col A = n.  This theorem follows from considerations of the 
reduced row echelon form of A.

In the Friday food for thought questions this past Friday we realized there's a third interesting subspace 
associated to the matrix A, namely Row A, which is the subspace in n spanned by the rows of A.  We'll 
see the fourth and final subspace associated with A tomorrow, and what how these four subspaces are 
connected to the domain and codomain geometry of the transformation T x = A x.  (This is section 4.6, 
which we've been secretly thinking about for the past week. We'll utilize many of these ideas again in 
Chapter 6, e.g. section 6.5.)

We've defined kernel T and range T for linear transformations T : V W, generalizing Nul A and Col A  
for matrix transformations.

We've defined what it means for a linear transformation T : V W to be an isomorphism, and checked that 
in this case the inverse function T 1 : W V is also a linear transformation (isomorphism) - generalizing 
the notion of invertible matrix transformations T : n n that are given as T x = A x, with 
T 1 y = A 1 y .

With a basis = v1, v2,  ... vn  for a vector space V we can define the coordinate transformation 
isomorphism T : V n

T c1 v1 c2  v2  ...  cn  vn

c1 

c2 

:

cn 

 = v   

and use these coordinate systems to answer questions about V.



There is a circle of ideas related to linear independence, span, and basis for vector spaces, which it is good 
to try and understand carefully.  That's what we'll do today.  These ideas generalize (and use) ideas we've 
already explored more concretely, and facts we already know to be true for the vector spaces n.    (A 
vector space that does not have a basis with a finite number of elements is said to be infinite dimensional.  
For example the space of all polynomials of arbitrarily high degree is an infinite dimensional vector space.  
We often study finite dimensional subspaces of infinite dimensional vector spaces.)

Theorem 1  (constructing a basis from a spanning set):  Let V be a vector space of dimension at least one, 
and let  span v1, v2,  ... vp = V.  
Then a subset of the spanning set is a basis for V.   (We followed a procedure like this to extract bases for 
Col A.)

Theorem 2  Let V be a vector space, with basis = b1, b2,  ... bn .  Then any set in V containing more 
than n elements must be linearly dependent. (We used reduced row echelon form to understand this in n.)



Theorem 3  Let V be a vector space, with basis = b1, b2,  ... bn .  Then no set  = a1, a2,  ... ap  with 
p n vectors can span V.  (We know this for n.)  

Theorem 4  Let V be a vector space, with basis = b1, b2,  ... bn .  Let  = a1, a2,  ... ap  be a set of 

independent vectors that don't span V.  Then p n, and additional vectors can be added to the set  to 
create a basis  a1, a2,  ... ap, ... an   (We followed a procedure like this when we figured out all the 
subspaces of 3.)





Theorem 5  Let Let V be a vector space, with basis = b1, b2,  ... bn .  Then every basis for V has exactly
n vectors.   (We know this for n.)

Theorem 6   Let Let V be a vector space, with basis = b1, b2,  ... bn .  If    = a1, a2,  ... an  is 

another collection of exactly  n vectors in V, and if  span a1, a2,  ... an = V, then the set  is automatically
linearly independent and a basis.  Conversely, if the set a1, a2,  ... an  is linearly independent, then 

span a1, a2,  ... an = V is guaranteed, and  is a basis.  (We know all these facts for n from reduced 
row echelon form considerations.)



Corollary   Let Let V be a vector space of dimension n.  Then the subspaces of V have dimensions 
0, 1, 2,...n 1, n.  (We know this for n.)

Remark  We used the coordinate  transformation isomorphism between a vector space V with basis 
= b1, b2,  ... bn  for Theorem 2, but argued more abstractly for the other theorems.  An alternate 

(quicker) approach is to just note that because the coordinate transformation is an isomorphism it preserves
sets of independent vectors, and maps spans of vectors to spans of the image vectors, so maps subspaces 
to subspaces.  Then every one of the theorems above follows from their special cases in n,  which we've 
already proven.  But this shortcut shortchanges the conceptual ideas to some extent, which is why we've 
discussed the proofs more abstractly.



Tues Mar 6
          4.6  The four subspaces associated with a matrix.  the rank of a matrix.

Announcements: 

Warm-up Exercise:



Let A be an m n matrix.  There are four subspaces associated with A.  To keep them straight, keep in 
mind the associated linear transformation

T : n m  given by T x = A x.

And, as usual, we can express A in terms of its columns, A = a1  a2   ... an  .  Then the two subspaces 
we know well are

Col A = span a1, a2,  ... an  m  

Nul A = x n : A x = 0 n.

And, in your homework you already figured out the "rank + nullity" theorem, that

dim Col A  dim Nul A = n.

The reason for this is that if p is the number of pivots in the reduced row echelon form of A, then

 dim Col A = p  
 dim Nul A = n p.

The number of pivots, i.e. dim Col A  is called the rank of the matrix A.   What are the other two 
subspaces and why do we care?  Well, 



    First, recall the geometry fact that the dot product of two vectors in n is zero if and only if the vectors
are perpendicular, i.e.

u  v = 0     if and only if u  v .

 (Well, we really only know this in 2 or 3 so far, from multivariable Calculus class. But it's true for all 
n, as we'll see in Chapter 6.)   So for a vector x Nul A we can interpret the equation 

A x = 0

as saying that x is perpendicular to every row of A.  Because the dot product distributes over addition, we 
see that each x  Nul A is perpendicular to every linear combination of the rows of A.  This motivates the 
next subspace associated with A, namely the rowspace.  In other words, if we express A in terms of its 
rows,

A = 

   R1   

  R2  

:

     Rm    

then 
Row A  span R1, R2, ... Rm

n.

And, Row A  Nul A.  

As we do elementary operations on the rows of A we don't change their span, so we get a great basis for 
Row A by using the non-zero rows of rref A ...as in your food for thought this past Friday, and this 
week's homework.   So, the dimension of Row A  is p, the number of pivots in the reduced matrix.  So in 
the domain n, we have this picture:

dim Nul A = n p
dim Row A  = p
Nul A Row A.  

The final subspace lives in the codomain m, along with Col A.  Well,  Col A = Row AT.  And so Nul AT is 
the final subspace.  Since AT has m columns an p pivots, there are m p free parameters when we solve 
ATy = 0, so dim Nul AT = m p and in the codomain m we have this picture:

Col A = Row AT

dim Row AT = p
dim Nul AT = m p

Nul AT  Row AT.



small example.
T : 2 2 

T
x1
x2

=
1 1

2 2

x1
x2

S
y1
y2

=
1 2

1 2

y1
y2



Here's a schematic of what's going on, stolen from the internet.  The web site I stole it from looks pretty 
good....

http://www.itshared.org/2015/06/the-four-fundamental-subspaces.html



More details on the decompositions ....  In the domain n , the two subspaces associated to A are  Row A 
and Nul A.  Notice that the only vector in their intersection is the zero vector, since 

x Row A  Nul A      x  x = 0         x = 0.  

So, let 
u1, u2,  ... up        be a basis for    Row A

v 1, v 2,  ... v n p       be a basis for Nul A.

Then we can check that set of n vectors obtained by taking the union of the two sets,
u1, u2,  ... up, v 1, v 2,  ... v n p  

is actually a basis for n.   This is because we can show that the n vectors in the set are linearly 
independent, so they automatically span n and are a basis:  To check independence,, let

c1 u1   c2 u2   ...  cp up   d1 v1   d2 v2   ...  dn p v n p = 0.
then

c1 u1   c2 u2   ...  cp up =  d1 v1   d2 v2   ...  d n p vn p.

Since the vector on the left is in Row A and the one that it equals on the right is in Nul A, this vector is the 
zero vector:

c1 u1   c2 u2   ...  cp up =  0 =  d1 v1   d2 v2   ...  dn p vn p.

Since u1, u2,  ... up  and v 1, v 2,  ... v n p  are linearly independent sets,  we deduce from these two 
equations that

c1= c2 = ...  = cp = 0,            d1= d2 = ...  = dn p = 0 .
Q.E.D.

So the picture on the previous page is completely general, also for the decomposition of the codomain.   
One can check that the transformation T x = A x restricts to an isomorphism from Row A to Col A, 
because it is 1 1 on these subspaces of equal dimension, so must also be onto.  So, T squashes Nul A, 
and maps every translation of Nul A to a point in Col A.  More precisely, Each

x  n

can be written uniquely as
x = u  v      with u  Row A,  v   Nul A.

and

T u v = T u T v = T u Col A .
As sets,

T u Nul A = T u .



Wed Mar 7
          4.7 Change of basis

Announcements: 

Warm-up Exercise:



The setup:  Let V be a finite dimensional vector space, with two bases,
B  = b1, b2,  .... bn    
C = c1, c2,  .... cn  

How do we change from the coordinate system of the B basis to that of the C basis?  If we can express the
B vectors in terms of the C vectors it's straightforward:

Example  Let B  = b1, b2 ,  C = c1, c2  be bases for the two-dimensional vector space V.  Suppose 
b1 = 4 c1  c2 
b2 = 6 c1  c2.

Let v B = 
x1

x2
 .  Find  v C .

Solution:  
v = x1 b1 x2 b2 

v C  = x1 b1 x2 b2 C        

              = x1 b1 C x2 b2 C 

                   v C   = b1 C  b2 C  
x1

x2
  

       v C    = 
4 6

1 1

x1

x2
  .

Note that the coordinate transition matrix  P C B   would always given by  
 b1 C  b2 C  .

no matter what the particular coordinate vectors b1 C , b2 C  are.



Exercise 1  Consider V = a  b t  , the space of polynomials in t of degree 1.  Let C = 1, t  be the 
"standard basis". and let B  = 1 t, 1 t .  Be an alternate basis.

1a)  Find the transition matrix  P C B .

1b)  Suppose q t V with  q B = 
2

3
.  Find q C  by using the transition matrix  P C B.  Compare

to the direct method (which should be just as easy in this simple case).

1c)  The transition matrix in the reverse direction must be the inverse of the original transition matrix.  Find
 P B C =  P C B 1 .

1d)  Suppose  r t = 1 7 t.   Find r B  and check your work.



Change of coordinate transition matrices work the same in every dimension.

Let V be a finite dimensional vector space, with two bases,
B  = b1, b2,  .... bn    
C = c1, c2,  .... cn  .

Then for
v = x1 b1 x2 b2+ ... + xn bn

v C = [ x1 b1 x2 b2+ ... + xn bn C  

v C  =  x1 b1 C x2 b2 C   ...   xn bn C  

 v C   = b1 C  b2 C ... bn C  

x1

x2

:

xn

 .

P C B  =  b1 C  b2 C ... bn C   . 



A special case of change of coordinates is when the vector space V is n itself.  In that case there are two 
ways to find the coordinate transition matrices.  Let

B  = b1, b2,  .... bn    
C = c1, c2,  .... cn  .

be two bases for n.  

Method 1:  Let

E =  e1, e2,  .... en  

be the standard basis.  As we discussed previously and as a special case of our current discussion,  since 
for v n, v E = v,  

P E B = b1, b2,  .... bn  

P E C = c1, c2,  .... cn  .

Since composition of matrix transformations corresponds to matrix multiplication, the transition matrix 
from B  to C coordinates can be computed via the standard coordinate transiton matrices:

P C B =  P C E  P E B   =  P E C 1
 P E B

Method 2:  Direct method.  We know  

P C B  =  b1 C  b2 C ... bn C  .

Consider the columns of the transition matrix as unknowns - as when we were finding the columns of 
inverses matrices by a multi-augmented matrix procedure to solve A X = I.  In this case, and illustrating 
with n = 2 for simplicity, 

P C B  =  b1 C  b2 C   .

The first column

 b1 C = 
y1 

y2
   

satisfies

y1 c1  y2 c2 = b1  



c1 c2 
y1 

y2
 =  b1 

and the second column 

b2 C = 
z1 

z2

satisfies

  c1 c2 
z1 

z2
 =  b2

We solve for the two columns with a double augmented matrix reduction:

c1   c2   b1  b2       
1 0 y1 z1 

0 1 y2 z2
   

(And this generalizes to n.)



Exercise 2  Test the two methods for finding 

P C B  

where

B  = 
3

1
,

2

1
        C  = 

1

1
,

1

1



Fri Mar 2
         5.1-5.2  Eigenvectors and eigenvalues for square matrices

Announcements: 

Warm-up Exercise:



Eigenvalues and eigenvectors for square matrices.

To introduce the idea of eigenvalues and eigenvectors we'll first think geometrically.

Example   Consider the matrix transformation T : 2 2 with formula

T
x1

x2
=

3 0

0 1

x1

x2
= x1

3

0
x2

0

1
 .

Notice that for the standard basis vectors e1 = 1, 0 T, e2 = 0 , 1 T 
T e1 = 3e1 
T e2 = e2  .

The facts that T is linear and that it transforms e1, e2 by scalar multiplying them, lets us understand the 
geometry of this transformation completely: 

T
x
1

x
2

= T x
1
e
1

x
2
e
2

= x
1
T e

1
x
2
T e

2
  

                           = x
1

3e
1

x
2

1e
2

  .

In other words, T stretches by a factor of 3 in the e1 direction, and by a factor of 1 in the e2 direction, 
transforming a square grid in the domain into a parallel rectangular grid in the image:



Definition:  If An n and if A v =  v for a scalar  and a vector v 0  then v is called an eigenvector of A ,

and  is called the eigenvalue of v .  (In some texts the words characteristic vector and characteristic value 
are used as synonyms for these words.)

  In the example above, the standard basis vectors (or multiples of them) are eigenvectors, and the 
corresponding eigenvalues are the diagonal matrix entries.  A non-diagonal matrix may still have 
eigenvectors and eigenvalues, and this geometric information can still be important to find.  But how do 
you find eigenvectors and eigenvalues for non-diagonal matrices? ...

Exercise 2)  Try to find eigenvectors and eigenvalues for the non-diagonal matrix, by just trying random 
input vectors x and computing A x.

A =
3 2

1 2
 .



How to find eigenvalues and eigenvectors (including eigenspaces) systematically:

If
           A v =  v 

A v  v = 0       

A v  I v = 0          
where I is the identity matrix.

 A  I v = 0 .

As we know, this last equation can have non-zero solutions v if and only if the matrix A  I  is not 
invertible, i.e. 

det A  I = 0 .

So, to find the eigenvalues and eigenvectors of matrix you can proceed as follows:

     Compute the polynomial in λ 
p = det A  I  .

If An n then p  will be degree n.  This polynomial is called the characteristic polynomial of the matrix 
A. 

     j can be an eigenvalue for some non-zero eigenvector v if and only if it's a root of the characteristic 

polynomial, i.e. p j = 0.  For each such root, the homogeneous solution space of vectors v solving

A j I v = 0 

will be eigenvectors with eigenvalue j.  This subspace of eigenvectors will be at least one dimensional, 

since A j I  does not reduce to the identity and so the explicit homogeneous solutions will have free 
parameters.  Find a basis of eigenvectors for this subspace.  Follow this procedure for each eigenvalue, i.e.
for each root of the characteristic polynomial.

Notation:  The subspace of eigenvectors for eigenvalue j is called the j eigenspace, and we'll denote it by
E

=
j
 .     The basis of eigenvectors is called an eigenbasis for E

j
 . 



Exercise 3)  a)  Use the systematic algorithm to find the eigenvalues and eigenbases for the non-diagonal 
matrix of Exercise 2.

A =
3 2

1 2
 .

b)  Use your work to describe the geometry of the linear transformation in terms of directions that get 
stretched:

T
x1

x2
=

3 2

1 2

x1

x2
.



Exercise 4)  Find the eigenvalues and eigenspace bases for

B :=

4 2 1

2 0 1

2 2 3
 .

(i)  Find the characteristic polynomial and factor it to find the eigenvalues.

(ii) for each eigenvalue, find bases for the corresponding eigenspaces.

(iii) Can you describe the transformation T x = Bx geometrically using the eigenbases?  Does det B  
have anything to do with the geometry of this transformation?



Your solution will be related to the output below:

In all of our examples so far, it turns out that by collecting bases from each eigenspace for the matrix 
An n, and putting them together, we get a basis for n .  This lets us understand the geometry of the 
transformation

T x = A x  
almost as well as if A is a diagonal matrix.  This is actually something that does not always happen for a 
matrix A.  When it does happen, we say that A is diagonalizable.  Here's an example of a matrix which is 
NOT diagonalizable:

Exercise 5:  Find matrix eigenvalues and eigenspace basis for each eigenvalue, for

A =
3 2

0 3
 .

Explain why there is no basis of 2 consisting of eigenvectors of A.


