Math 2270-004 Week 8 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent an in-depth outline of what we plan to cover. These notes cover material in 4.2-4.6.

Mon Feb 26

• 4.2 - 4.3 bases for vector spaces and subspaces; *Nul A* and *Col A*; generalization to linear transformations.

Announcements: I'll post fft sollins tonight

2nd entry
$$c_1 = 2$$

4th entry $c_2 = 3$
5th $c_3 = -1$
2 $\binom{2}{1} + 3 \begin{pmatrix} 1\\0\\-1\\0\\0\\0 \end{pmatrix} = \binom{-1}{0} = \binom{8}{2}$
 $\binom{2}{-2}$
 $\binom{3}{-1}$
 $\binom{1}{0} = \binom{8}{2}$
 $\binom{2}{-2}$
 $\binom{3}{-1}$
 $\binom{1}{0} = \binom{1}{2}$
 $\binom{2}{-2}$
 $\binom{3}{-1}$
 $\binom{3}{-1}$
 $\binom{3}{-1}$
 $\binom{3}{-1}$
 $\binom{1}{0} = \binom{3}{-2}$
 $\binom{3}{-1}$
 $\binom{3}{-1}$
 $\binom{1}{0} = \binom{3}{-2}$
 $\binom{3}{-1}$
 $\binom{3}{-1}$
 $\binom{1}{0} = \binom{3}{-2}$
 $\binom{3}{-1}$
 $\binom{3}{-$

Monday Review!

We've been discussing <u>vector spaces</u>, which are a generalization of \mathbb{R}^n : Namely, a vector space is a nonempty set *V* of objects, called vectors, on which are defined two operations, called *addition* and *scalar multiplication*, so that ten natural axioms about vector addition and scalar multiplication hold (along with three additional useful consequences that we often use, and that you thought about on your food for thought).

Last week we discovered that certain subsets of vector spaces are also vector spaces (with the same addition and scalar multiplication as in the larger space) - namely <u>subspaces</u> of a vector space V: these are subsets H of V that satisfy She vector space Spaces.

- a) The zero vector of V is in H
- b) *H* is closed under vector addition, i.e. for each $\underline{u} \in H$, $\underline{v} \in H$ then $\underline{u} + \underline{v} \in H$.
- c) *H* is closed under scalar multiplication, i.e for each $\underline{u} \in H$, $c \in \mathbb{R}$, then also $c \underline{u} \in H$.

We defined <u>linear dependence</u> and <u>linear independence</u> for sets of vectors $\{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_p\}$ in a vector space V.

A *basis* for a vector space V is a set of vectors $\{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_p\}$ that *span V* and that is also *linearly* independent.

The *dimension* of a vector space V is the number of vectors in any basis for V. (We'll show why every basis for a fixed vector space V- no matter how weird V may seem - has the same number of vectors, later this week.)

We showed that one way subspaces arise is as $H = span \{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_p\}$ for sets of vectors $\{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_p\}$ in a vector space *V*. This is an explicit way to describe *H* because you are saying exactly which vectors are in it. If the vectors in the spanning set $\{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_p\}$ are not already independent, we illustrated how to remove extraneous dependent vectors without shrinking the span, until we were left with a basis for the subspace *H*. (We'll return to this today ..., it was an example with H = Col A)

O-dimil, by def.

1 - dimensional subspaces

We discovered that the only subsets of \mathbb{R}^3 that succeed at being subspaces of \mathbb{R}^3 are

• { <u>0</u> }

$$span\{\underline{u}\}\$$
 for some $\underline{u} \neq \underline{0}$ (a line thru the origin)

- $span\{\underline{u}, \underline{v}\}$ for some $\{\underline{u}, \underline{v}\}$ linearly independent 2 dimensional subspaces
- $span\{\underline{u}, \underline{v}, \underline{w}\} = \mathbb{R}^3$ for $\{\underline{u}, \underline{v}, \underline{w}\}$ linearly independent 3 dimensional (sub)space.
- We realized that what happens in \mathbb{R}^3 with respect to subspaces, generalizes to \mathbb{R}^n .

Towards the end of class on Friday we realized that for an $m \times n$ matrix A,

Nul $A := \{ \underline{x} \in \mathbb{R}^n \text{ for which } A \underline{x} = \underline{0} \}$

is a subspace. This is an <u>implicit way</u> to specify a subspace, because you're prescribing equations which the elements \underline{x} musts satisfy, but not explicitly saying what the elements are.

Picking up where we left off

Exercise 1a) For the same matrix A as in Exercise 2 from Wednesday's notes, express the vectors in Nul(A) explicitly, using the methods of Chapters 1-2. Notice these are vectors in the domain of the associated linear transformation $T : \mathbb{R}^5 \to \mathbb{R}^3$ given by $T(\underline{x}) = A \underline{x}$, so are a subspace of \mathbb{R}^5 .

$$A \stackrel{=}{\times} = \stackrel{=}{0} \qquad A = \begin{bmatrix} 1 & -2 & 0 & -1 & 1 \\ -2 & 4 & 0 & 2 & -2 \\ 3 & -6 & 4 & 1 & 7 \end{bmatrix} \stackrel{=}{0} \stackrel{=}{0} reduces to \begin{bmatrix} 1 & -2 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{=}{0} \stackrel{=}$$

4.2 Null spaces, column spaces, and linear transformations from \mathbb{R}^n to \mathbb{R}^m .

<u>Definition</u> Let A be an $m \times n$ matrix, expressed in column form as $A = [\underline{a}_1 \ \underline{a}_2 \ \underline{a}_3 \ \dots \ \underline{a}_n]$ The column space of A, written as Col A, is the span of the columns:

$$Col A = span \{ \underline{a}_1 \ \underline{a}_2 \ \underline{a}_3 \ \dots \ \underline{a}_n \}.$$

Equivalently, since

$$A \underline{x} = x_1 \underline{a}_1 + x_2 \underline{a}_2 + \dots + x_n \underline{a}_n$$

we see that Col A is also the range of the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\underline{x}) = A \underline{x}$, i.e.

$$Col A = \{ \underline{b} \in \mathbb{R}^m \text{ such that } \underline{b} = A \underline{x} \text{ for some } \underline{x} \in \mathbb{R}^n \}.$$

<u>Theorem</u> By the "spans are subspaces" theorem, Col(A) is always a subspace of \mathbb{R}^m .

Exercise 2a) Consider

$$A = \begin{bmatrix} 1 & -2 & 0 & -1 & 1 \\ -2 & 4 & 0 & 2 & -2 \\ 3 & -6 & 4 & 1 & 7 \end{bmatrix}.$$

By the Theorem, col(A) is a subspace of \mathbb{R}^3 . Which is it: $\{\underline{0}\}$, a line thru the origin, a plane thru the origin, or all of \mathbb{R}^3 . Hint:

<u>2b</u>) Is there a more efficient way to express Col A as a span that doesn't require all five column vectors?

$$c_{1}\vec{a}_{1} + c_{2}\vec{a}_{2} + c_{3}\vec{a}_{3} + c_{4}\vec{a}_{4} + c_{5}\vec{a}_{5} = c_{1}\vec{a}_{1} + c_{2}(-2\vec{a}_{1}) + c_{3}\vec{a}_{3} + c_{4}(-\vec{a}_{1} + \vec{a}_{3}) + c_{5}(\vec{a}_{1} + \vec{a}_{3}) = d_{1}\vec{a}_{1} + d_{3}\vec{a}_{3} = Col A = span\{\vec{a}_{1}, \vec{a}_{2}, ...\vec{a}_{5}\}$$

$$= d_{1}\vec{a}_{1} + d_{3}\vec{a}_{3} = Col A = span\{\vec{a}_{1}, \vec{a}_{2}, ...\vec{a}_{5}\}$$

$$= span\{\vec{a}_{1}, \vec{a}_{3}\} = span\{\vec{a}_{1}, \vec{a}_{2}\} = span\{\vec{a}_{1}, \vec{a}_{3}\} = span\{\vec{a}_{1}, \vec{a}_{2}\} = span\{\vec{a}_{1}, \vec{a}_{3}\} = span\{\vec{a}_{1}, \vec{a}_{3}\} = span\{\vec{a}_{1}$$

Not all bases are created equal!

<u>Theorem</u>: Let $span\{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_p\} = H$ be a subspace. The following *elementary operations* do not effect the span of the resulting ordered set:

(i) swap two of the vectors in the set, i.e. replace \underline{v}_j with \underline{v}_k , and replace \underline{v}_k with \underline{v}_j .

$$span \{\vec{v}_{1}, ..., \vec{v}_{j}, ..., \vec{v}_{p}\} = span \{\vec{v}_{1}, ..., \vec{v}_{k}, ..., \vec{v}_{p}\} = span \{\vec{v}_{1}, ..., \vec{v}_{k}, ..., \vec{v}_{p}\} = span \{\vec{v}_{1}, ...$$

Exercise 1) Use the "change of spanning set" theorem above, to find a better basis for Col A then the one we came up with by culling dependent vectors, on Friday. Hint: Use elementary column operations to compute the reduced column echelon form of A. Illustrate why this new basis is a better basis for Col A by seeing how easy it is to express any one of the original column vectors in terms of this improved basis.

In this example, $A = [\underline{a}_1 \ \underline{a}_2 \ \underline{a}_3 \ \underline{a}_4 \ \underline{a}_5]$ and $Col A = span \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\} = span \{\overline{a}_1, \overline{a}_2\}$.

	1	-2	0	-1	1]
A =	-2	4	0	2	-2	
	3	-6	4	1	7	

As we just reviewed, on Friday we realized that a pretty good basis for Col A is $\{\underline{a}_1, \underline{a}_3\}$:

			\sim									
	1	-2	0	-1	1		[1	-2	0	-1	1]
	-2	-2 4 -6	0	2	-2	row reduces to	0	0	1	1	1	
	3	-6	4	1	7		0	0	0	0	0	
L	\bigvee		V		-							-

Now column reduce A to get a basis for Col A that's as good as you could hope for....and show this by expressing each of the original columns in terms of this basis.

, ()	$A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \\ 3 & -6 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
rce f 2 a + a - a a + a - a a + a - a a + a - a - a + a - a - a + a - a	$ \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 3 & 0 & 4 & 4 \end{bmatrix} $	7
۹ ₂ -) ۹۶ ۹۶ -) ۹۶	$ \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix} $	= { []; [] best basis for Col A
$\frac{1}{4} q_2 \rightarrow q_2$ $- 4 q_2 + q_3 \rightarrow q_3$ $- 4 q_2 + q_4$	$ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & 0 \\ 3 & 1 & 4 & 4 & 0 \end{bmatrix} $ $ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0 \end{bmatrix} $	Thesday: $\vec{a}_s = -2 = 1 -2 + 7 = 1$
-322+2,-7 2,	$\begin{bmatrix} 3 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$	$\vec{q}_{ij} = \begin{pmatrix} -l \\ 2 \\ l \end{pmatrix} = - \begin{bmatrix} l \\ -2 \\ 0 \end{bmatrix} + l \begin{bmatrix} 0 \\ 0 \\ l \end{bmatrix}$

general linear transformations.

The ideas of nullspace and column space generalize to arbitrary linear transformations between vectors spaces - with slightly more general terminology.

<u>Definition</u> Let V and W be vector spaces. A function $T: V \rightarrow W$ is called a *linear transformation* if for each $\underline{x} \in V$ there is a unique vector $T(\underline{x}) \in W$ and so that

(i)
$$T(\underline{u} + \underline{v}) = T(\underline{u}) + T(\underline{v})$$
 for all $\underline{u}, \underline{v} \in V$
(ii) $T(c \underline{u}) = c T(\underline{u})$ for all $\underline{u} \in V, c \in \mathbb{R}$
Definition The kernel (or nullspace) of T is defined to be $\{\underline{u} \in V: T(\underline{u}) = \underline{0}\}$.
Definition The range of T is $\{\underline{w} \in W: \underline{w} = T(\underline{v}) \text{ for some } \underline{v} \in V\}$.
 $Col A$

<u>Definition</u> The range of T is $\{\underline{w} \in W : \underline{w} = T(\underline{v}) \text{ for some } \underline{v} \in V\}$.

<u>Theorem</u> Let $T: V \rightarrow W$ be a *linear transformation*. Then the kernel of T is a subspace of V. The range of *T* is a subspace of *W*.

$$Z = \text{ kennel } T \text{ in } V, \text{ is subspace}$$

$$i) \vec{o} \in Z$$

$$2) \vec{u}_{1}\vec{v} \in Z \Rightarrow \vec{u} + \vec{v} \in Z$$

$$3) \vec{c} \in Z \Rightarrow \vec{c} \vec{u} \in Z.$$

$$i) \text{ is } T(\vec{o}) = \vec{o} ? \qquad \forall \vec{c} \\ T(\vec{o}) = T(\vec{o}) + T(\vec{o})$$

$$2) \text{ if } T(\vec{u}) = \vec{o}, T(\vec{v}) = \vec{o} \\ T(\vec{o}) = T(\vec{o}) + T(\vec{o})$$

$$2) \text{ if } T(\vec{u}) = \vec{o}, T(\vec{v}) = \vec{o} \\ T(\vec{u}) = T(\vec{c}) + T(\vec{v})$$

$$= \vec{o} + \vec{b} = \vec{o}. \quad so \quad \vec{u} + \vec{v} \in Z.$$

$$3) \text{ if } T(\vec{u}) = \vec{o} \\ \text{ Hen } T(\vec{c}\vec{u}) = c \quad T(\vec{u}) = c \quad \vec{o} = \vec{O}.$$

$$(ii) \qquad so \quad c \quad \vec{u} \in Z.$$

$$3) \text{ if } T(\vec{u}) = \vec{o} \\ \text{ Hen } T(\vec{c}\vec{u}) = c \quad T(\vec{u}) = c \quad \vec{O} = \vec{O}.$$

$$(ii) \qquad so \quad c \quad \vec{u} \in Z.$$

$$3) \text{ is } \text{ Range } T \quad (c \neq \vec{u}) = c \quad \vec{O} = \vec{O}.$$

$$(ii) \qquad so \quad c \quad \vec{u} \in Z.$$

$$3) \text{ is } \text{ Range } T \quad (c \neq \vec{u}) = c \quad \vec{O} = \vec{O}.$$

$$(ii) \qquad so \quad c \quad \vec{u} \in Z.$$

$$3) \text{ is } \text{ Range } T \quad (c \neq \vec{u}) = c \quad \vec{O} = \vec{O}.$$

$$(ii) \qquad so \quad c \quad \vec{u} \in Z.$$

$$3) \text{ is } \text{ Range } T \quad (c \neq \vec{u}) = c \quad \vec{O} = \vec{O}.$$

$$(ii) \qquad so \quad c \quad \vec{u} \in Z.$$

$$3) \text{ is } \text{ Range } T \quad (c \neq \vec{u}) = c \quad \vec{O} = \vec{O}.$$

$$(ii) \qquad scalar mult \\ (c \notin \vec{u} \in \text{ Range } T) \quad c \quad T(\vec{u}_1, \vec{u}_2) = T(\vec{u}_1) + T(\vec{u}_2)^{-1} (\vec{u}_1) = \vec{w}.$$

$$(c \notin \vec{u} \in \text{ Range } T) \quad c \quad T(\vec{u}_1 + \vec{u}_2) = T(\vec{u}_1) + T(\vec{u}_2)^{-1} (\vec{u}_1) = \vec{w}.$$

$$\int_{SO} \vec{w} = T(\vec{u})$$

$$\int_{SO} T(c\vec{u}) = cT(\vec{u}) = c\vec{w}$$

Exercise 2 Let V be the vector space $C^{1}[a, b]$ of real-valued functions f defined on an interval [a, b] with the property that they are differentiable and that their derivatives are continuous functions on [a, b]. Let W be the vector space C[a, b] of all continuous functions on the interval [a, b]. Let D : $V \rightarrow W$ be the derivative transformation

$$D(f) = f'$$
.
 $D(f)_{(x)} = 3e^{3x}$

<u>2a</u>) What Calculus differentiation rules tell you that D is a linear transformation?

$$(f + g)' = f' + g'$$

 $D(f + g) = D(f) + D(g)$
 $(cf)' = cf' c const$
 $D(cf) = cD(f)$

$$T[\vec{u}+\vec{v}] = T(\vec{u}) + T(\vec{v})$$
$$T[\vec{u}+\vec{v}] = cT(\vec{u})$$

<u>2b</u>) What subspace is the kernel of D?

$$|cennel D = \{constant functions\} = \{c, c \in \mathbb{R}\}$$

$$= span \{1\}$$

$$Mean$$

$$Value$$

$$Theorem.$$

$$1(x)=1$$

<u>2c</u>) What is the range of D? = C[a,b].

because if
$$f(x)$$
 is continuous on $[a,b]$
then $\int_{a}^{x} f(t) dt$ is an antiderivative $\in C^{1}(a,b]$.
F(x)
 $D(F) = f !$
 $F(a)$
 $Theorem of$
 $Calculus, part I$

Tues Feb 27

• 4.4 Coordinate systems for finite dimensional vector spaces

Announcements: (et V be a rectrispace with basis
$$\beta = \{\overline{v}_{1}, \overline{v}_{2}, ..., \overline{v}_{n}\}$$

This basis gives us a coordinale system for V:
for $\overline{v} = c_{1}\overline{v}_{1} + c_{2}\overline{v}_{2} + ... + c_{n}\overline{v}_{n}$
 $c_{1}, c_{2} - c_{n}$ are the combinales of \overline{v} with respect to β
"till 12:57
Warm-up fixeteise:
consider span $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} \right\}$ which is a plane in \mathbb{R}^{3} with
implicit equation
the point $\left[\begin{matrix} 1.5 \\ -1 \end{matrix} \right]$ lies on this plane
 $\begin{bmatrix} c_{1} \\ c_{2} \end{matrix} + 2 = 0 \end{bmatrix}$
Find $\begin{bmatrix} c_{1} \\ 5 \\ -1 \end{bmatrix}$ is that
 $\begin{bmatrix} 1.5 \\ 0 \end{bmatrix} + \begin{bmatrix} c_{2} \\ 5 \\ -1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0 \\ -1 \end{bmatrix}$.
Statch $i \cdot S \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + ... S \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$ with respect to β
 $\begin{bmatrix} r_{1} \\ r_{2} \end{bmatrix}$ with respect to β
 $\begin{bmatrix} r_{1} \\ r_{2} \end{bmatrix}$ is the very that a plane then the
origin in \mathbb{R}^{3} is "like" \mathbb{R}^{2} , but not \mathbb{R}^{2} .

<u>Theorem</u> Let *V* be a vector space, and let $\{\underline{\boldsymbol{b}}_1, \underline{\boldsymbol{b}}_2, \dots \underline{\boldsymbol{b}}_p\}$ be a basis for *V*. Then for each $\underline{\boldsymbol{v}} \in V$ there is a <u>unique set</u> of scalars $c_1, c_2, \dots c_p$ so that

$$\underline{\mathbf{y}} = c_1 \underline{\mathbf{b}}_1 + c_2 \underline{\mathbf{b}}_2 + \dots + c_p \underline{\mathbf{b}}_p, \qquad \mathbf{E}_1$$
proof: Suppose
we could also write $\vec{\nabla} = d_1 \vec{\mathbf{b}}_1 + d_2 \vec{\mathbf{b}}_2 + \dots + d_p \vec{\mathbf{b}}_p \qquad \mathbf{E}_2$
subtract \mathbf{E}_2
(and use vector)
(and use vector)
(and use vector)
(and use vector)
(axions)
(commutativity)
$$\vec{\mathbf{c}} = (c_1 \vec{\mathbf{b}}_1 - d_1 \vec{\mathbf{b}}_1) + (c_2 \vec{\mathbf{b}}_2 - d_2 \vec{\mathbf{b}}_2) + \dots + (c_p \vec{\mathbf{b}}_p - d_p \vec{\mathbf{b}}_p)$$
(be cause $\{\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \dots - \vec{\mathbf{b}}_p\}$ in (in. indep.
(c_p - d_p = 0)
(c_p - d_p = 0)
(c_p - d_p = 0)

<u>Definition</u> (Each basis gives us a coordinate system). Let *V* be a vector space, and let $\beta = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_p\}$ be a basis for *V*. For each $\underline{v} \in V$ we say that *the coordinates of* \underline{v} *with respect to* β are c_1, c_2, \dots, c_p if

$$\underline{\boldsymbol{\nu}} = c_1 \underline{\boldsymbol{b}}_1 + c_2 \underline{\boldsymbol{b}}_2 + \dots + c_p \underline{\boldsymbol{b}}_p.$$

And, we write the vector of the coordinates of \underline{v} with respect to β as:

$$[\underline{\mathbf{v}}]_{\beta} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_p \end{bmatrix} \in \mathbb{R}^p.$$

coord.
vector $\overline{\mathbf{v}}$ with vespect
to the basis $\overline{\mathbf{B}}$.

Example: For the vector space

is a basis. So the coordinate vector of

$$P_{3} = \left\{ p(t) = a_{0} + a_{1} t + a_{2} t^{2} + a_{3} t^{3} \text{ such that } a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R} \right\}$$

we've checked that

$$\beta = \left\{ 1, t, t^2, t^3 \right\}$$

$$p(t) = (3) - 4t^2 + t^3$$

with respect to β is

$$\left[p\right]_{\beta} = \begin{bmatrix} 3\\0\\-4\\1 \end{bmatrix}$$

And, if $q \in P_3$, with

$$\left[q\right]_{\beta} = \left[\begin{array}{c} -2\\1\\7\\0\end{array}\right]$$

then

$$q(t) = -2 + t + 7t^2$$
.

It turns out that we can understand pretty much any vector space question about P_3 by interpreting the question in terms of the coordinates with respect to β , which lets us work in \mathbb{R}^4 in lieu of P_3 . That's what coordinates with respect to a basis are good for, when you're working with a non-standard vector space.

Exercise 1) Let

$$\beta = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} = \left\{ \underline{\boldsymbol{u}}, \underline{\boldsymbol{v}} \right\}$$

 $\begin{bmatrix} \vec{x} \end{bmatrix}_{\beta}^{F} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{E}$

X₁

L T

be a non-standard basis of \mathbb{R}^2 .

<u>1a</u>) Suppose \underline{x} is a vector in \mathbb{R}^2 , and

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\beta} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Find the standard coordinates for \underline{x} , i.e. its coordinates with respect to the standard basis $E = \{\underline{e}_1, | \underline{e}_2\}$.

$$\overrightarrow{x} = 2 \begin{bmatrix} t \\ -1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} = (\overrightarrow{x}]_{E} \begin{cases} \overrightarrow{x} \\ E \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x \\ \beta \end{bmatrix}$$

$$\overrightarrow{x}' = \begin{bmatrix} t & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 8 \end{bmatrix}$$
 (The math may seem familiar.) For wath \overrightarrow{x} from β ends to the vector $\overrightarrow{a} = \begin{bmatrix} 8 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The math may seem familiar.) For β ends to the vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$ (The vector $\overrightarrow{a} = \begin{bmatrix} -$

<u>Theorem</u> Let *V*, *W* be vector spaces, and $T: V \to W$ a linear transformation. If T is 1 - 1 and onto, then the inverse function T^{-1} is also a linear transformation, $T^{-1}: W \to V$. In this case, we call *T* an *isomorphism*.

<u>proof</u>: We have to check that for all $\underline{u}, \underline{w} \in W$ and all $c \in \mathbb{R}$,

$$\frac{d \mathbf{k} \mathbf{k}}{d \mathbf{k}} = T^{-1}(\underline{\mathbf{u}} + \underline{\mathbf{w}}) = T^{-1}(\underline{\mathbf{u}}) + T^{-1}(\underline{\mathbf{w}})$$
Since T is $l-1$

$$T^{-1}(c \underline{\mathbf{u}}) = c T^{-1}(\underline{\mathbf{u}}).$$
Suffices to check that T by $LHS'_{S} = T$ RHS'_S

$$T$$
 of RHS, T $(T^{-1}(\vec{\mathbf{u}}) + T^{-1}(\vec{\mathbf{w}})) \stackrel{\text{Trimen}}{=} T (T^{-1}(\vec{\mathbf{u}})) + T (T^{-1}(\vec{\mathbf{w}}))$

$$T$$
 of LHS. $T (T^{-1}(\vec{\mathbf{u}} + \overline{\mathbf{v}})) \stackrel{\text{Trimen}}{=} \overline{\mathbf{u}} + \overline{\mathbf{v}}$

$$T$$
 is linear
for scalar $: T (T^{-1}(c \vec{\mathbf{w}}) = c \vec{\mathbf{u}}) \stackrel{\text{Trimen}}{=} c \vec{\mathbf{u}}$

<u>Theorem</u> Let *V* be a vector space, with basis $\beta = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$. Then the coordinate transform $T: V \to \mathbb{R}^n$ defined by

$$T(\underline{\mathbf{v}}) = [\underline{\mathbf{v}}]_{\beta}$$
is linear, and it is an isomorphism.
$$T(\underline{\mathbf{v}}) = [\underline{\mathbf{v}}]_{\beta}$$

$$(\mathbf{v} + \vec{\mathbf{v}} = c_1\vec{b}_1 + c_2\vec{b}_2 + \dots + c_n\vec{b}_n \qquad S \circ [\vec{\mathbf{v}}]_{\beta} = \begin{bmatrix} c_1\\c_2\\\vdots\\c_n \end{bmatrix}$$

$$\vec{\mathbf{v}} = d_1\vec{b}_1 + d_2\vec{v}_2 + \dots + d_n\vec{b}_n \qquad [\vec{\mathbf{w}}]_{\beta} = \begin{bmatrix} d_1\\d_2\\\vdots\\d_n \end{bmatrix}$$

$$\vec{\mathbf{v}} + \vec{\mathbf{w}} = (c_1 + d_1)\vec{b}_1 + (c_2 + d_2)\vec{b}_2 + \dots + (c_n + d_n)\vec{b}_n \qquad [\vec{\mathbf{w}}]_{\beta} = \begin{bmatrix} c_1 + d_1\\d_2\\\vdots\\d_n \end{bmatrix}$$

$$(1) \quad T(\vec{\mathbf{v}} + \vec{\mathbf{w}}) = T(\vec{\mathbf{v}}) \quad \vec{\mathbf{v}} + \vec{\mathbf{w}} \end{bmatrix}_{\beta} = \begin{bmatrix} c_1 + d_1\\c_2 + d_2\\c_n + d_n \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{v}} \end{bmatrix}_{\beta} + \begin{bmatrix} \vec{\mathbf{v}} \end{bmatrix}_{\beta}$$

$$c_1\vec{\mathbf{v}} = c_1(\vec{b}_1 + c_2\vec{b}_2 + \dots + c_n\vec{b}_n) \\= c_1(\vec{v}_1 + c_2\vec{b}_2 +$$

'til 12:57 Friday warm-up (Exercise 2 in Tuesday notes)

Exercise 2: Use coordinates with respect to the basis $\{1, t, t^2\}$, to check whether or not the set of polynomials $\{p_1(t), p_2(t), p_3(t)\}$ is a basis for P_2 , where

$$p_{1}(t) = 1 + t^{2} \qquad [p_{1}]_{\beta} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \text{ etc.}$$

$$p_{2}(t) = 2 + 3t + t^{2}$$

$$p_{3}(t) = -3t + t^{2}.$$

i.e. check whether the woord vectors in R³ are independent & span R³. Then make conclusions about & pr, p2, p3} $P_2 = 2P_1 - P_3$ $2p_1 - p_2 - p_3 = 0$ $2(1+t^{2}) - (2+pt+t^{2}) - (-pt+t^{2}) = 0!$ how, with coudurectors instead the "old way" $c_{1} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c_{2} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} + c_{3} \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $p_{1}(t) = 2 + 3t + t^{2}$ 1 2 0 0 rref 1 0 2 0 0 3 -3 0 rref 0 1 -1 0 0 0 0 0 0 Theorem : If T: V-W is $c_2 = c_3$ $c_2 = free$ an isomorphism, then $C_3 = 1 : -2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} - 1 \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ {v,,...vp} is (in) dependent in V if and only if $\{T\vec{v}_1, T\vec{v}_2...T\vec{v}_p\}$ are (in)dependent in W proof : $|f - c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p = \vec{O}$ $\text{Hon} \quad \top \left(c_{1} \overrightarrow{v}_{1} + c_{2} \overrightarrow{v}_{2} + \dots + c_{p} \overrightarrow{v}_{p} \right) = \top \left(\overrightarrow{0} \right) = \overrightarrow{0}$ linearity -> 11 $c_1 T(\vec{v}_1) + c_2 T(\vec{v}_2) + \dots + c_p T(\vec{v}_p) = 0$ So, if { ~,... vp} are dependent then { T(v), T(v)... T(vp)} are also dependent, with the same weights apply same reasoning in reverse, by logic i asing T-1, to show that if same fact {TV, TV, ... TV} are dependent in W, then for "independent" {V, V21. Vp} are dependent in V. I

Exercise 3 Generalize the example of Exercise 1: Suppose $\beta = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$ is a non-standard basis of \mathbb{R}^n . And let $E = \{\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n\}$ be the standard basis of \mathbb{R}^n . For $\underline{x} \in \mathbb{R}^n$, how do you convert between $\underline{x} = [\underline{x}]_E$, and $[\underline{x}]_\beta$, and vise-verse?

$$\begin{array}{l} \star \quad \text{if } \quad \vec{x} = [\vec{x}]_{E} = c_{1}\vec{b}_{1} + c_{2}\vec{b}_{2} + \dots + c_{n}\vec{b}_{n} = \begin{bmatrix} \vec{b}_{1} \quad \vec{b}_{2} \cdots \vec{b}_{n} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix} \\ \begin{array}{l} \text{that means } \quad [\vec{x}]_{\beta} = \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix} \\ \\ \begin{array}{l} \star \quad [\vec{x}]_{E} = B \begin{bmatrix} \vec{x} \end{bmatrix}_{\beta} \\ \end{array} \qquad B \text{ is called } P \\ E \in P \\ \begin{array}{l} \star \ast \quad B^{-1}[\vec{x}]_{E} = [\vec{x}]_{\beta} \\ \end{array} \qquad B^{-1} \text{ is called } P \\ \begin{array}{l} E \in P \\ B^{-1} \text{ is called } P \\ B \in E \end{bmatrix} \\ \end{array}$$

Wed Feb 28

• 4.5 dimension of a vector space, and related facts about span and linear independence.

There is a circle of ideas related to linear independence, span, and bases for vector spaces, which it is good to try and understand carefully. That's what we'll do today. These ideas generalize (and use) ideas we've already explored more concretely, and facts we already know to be true for the vector spaces \mathbb{R}^n .

<u>Theorem 1</u> (constructing a basis from a spanning set): Let *V* be a vector space of dimension at least one, and let $span\{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_p\} = V$. Then a subset of the spanning set is a basis for *V*. (We followed a procedure like this to extract bases for

Col A.)

<u>Theorem 2</u> Let *V* be a vector space, with basis $\beta = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$. Then any set in *V* containing more than *n* elements must be linearly dependent. (We used reduced row echelon form to understand this in \mathbb{R}^n .)

<u>Theorem</u>: Let *V* be a vector space, with basis $\beta = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$. Let $\alpha = \{\underline{a}_1, \underline{a}_2, \dots, \underline{a}_p\}$ be a set of independent vectors that don't span *V*. Then p < n, and additional vectors can be added to the set α to create a basis $\{\underline{a}_1, \underline{a}_2, \dots, \underline{a}_p, \dots, \underline{a}_n\}$ (We followed a procedure like this when we figured out all the subspaces of \mathbb{R}^3 .)

<u>Theorem</u> Let *V* be a vector space, with basis $\beta = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$. Then no set $\alpha = \{\underline{a}_1, \underline{a}_2, \dots, \underline{a}_p\}$ with p < n vectors can span *V*. (We know this for \mathbb{R}^n .)

<u>Theorem 5</u> Let Let *V* be a vector space, with basis $\beta = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$. Then every basis for *V* has exactly *n* vectors. Furthermore, if $\alpha = \{\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n\}$ is another collection of exactly *n* vectors in *V*, and if $span\{\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n\} = V$, then the set α is automatically linearly independent and a basis. Conversely, if the set $\{\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n\}$ is linearly independent, then $span\{\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n\} = V$ is guaranteed, and α is a basis. (We know all these facts for \mathbb{R}^n from reduced row echelon form considerations.)

<u>Corollary</u> Let Let *V* be a vector space of dimension *n*. Then the subspaces of *V* have dimensions 0, 1, 2,...*n* – 1, *n*. (We know this for \mathbb{R}^n .)

Fri Mar 2

• 4.6 The four subspaces associated with a matrix. the rank of a matrix.

Warm-up Exercise: See Tnesday notes

<u>Theorem</u> Let *V*, *W* be vector spaces, and $T: V \to W$ a linear transformation. If T is 1 - 1 and onto, then the inverse function T^{-1} is also a linear transformation, $T^{-1}: W \to V$. In this case, we call *T* an *isomorphism*.

<u>proof:</u> We have to check that for all $\underline{u}, \underline{w} \in W$ and all $c \in \mathbb{R}$,

$$\frac{chech}{T^{-1}(\underline{u} + \underline{w})} = T^{-1}(\underline{u}) + T^{-1}(\underline{w})$$
Since T is $l-1$

$$T^{-1}(c \underline{u}) = c T^{-1}(\underline{u}).$$
Suffices to check that T by $LHS'_{S} = T$ RHS'_{S}

$$T$$
 of $RHS T$ $(T^{-1}(\vec{u}) + T^{-1}(\vec{w})) \stackrel{\downarrow}{=} T (T^{-1}(\vec{u})) + T (T^{-1}(\vec{u}))$

$$T$$
 of $LHS.$: $T (T^{-1}(\vec{u}+\vec{v})) \stackrel{\downarrow}{=} \vec{u} + \vec{v}$

$$T$$
 is linear
for scalar
is $T (T^{-1}(c\vec{w}) = c\vec{u}, T (cT^{-1}(\vec{u})) = cTT^{-1}(\vec{u}))$

$$T = cT$$

<u>Theorem</u> Let *V* be a vector space, with basis $\beta = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$. Then the coordinate transform $T: V \to \mathbb{R}^n$ defined by

$$T(\underline{\mathbf{v}}) = [\underline{\mathbf{v}}]_{\beta}$$
is linear, and it is an isomorphism.
$$T_{T}(\underline{\mathbf{v}}) = [\underline{\mathbf{v}}]_{\beta}$$

$$(\mathbf{v} + \vec{\mathbf{v}}) = c_{1}\vec{b}_{1} + c_{2}\vec{b}_{2} + \dots + c_{n}\vec{b}_{n}$$

$$\vec{\mathbf{v}} = d_{1}\vec{b}_{1} + d_{2}\vec{v}_{2} + \dots + d_{n}\vec{b}_{n}$$

$$\vec{\mathbf{v}} = d_{1}\vec{b}_{1} + d_{2}\vec{v}_{2} + \dots + d_{n}\vec{b}_{n}$$

$$\vec{\mathbf{v}} = (c_{1}+d_{1})\vec{b}_{1} + (c_{2}+d_{2})\vec{b}_{2} + \dots + (c_{n}+d_{n})\vec{b}_{n}$$

$$(1) \quad T(\vec{\mathbf{v}}+\vec{\mathbf{x}}) = T(\vec{\mathbf{v}}) \quad \vec{\mathbf{v}} = \vec{\mathbf{v}}_{1}^{-1}\vec{b}_{1} + (c_{2}+d_{2})\vec{b}_{2} + \dots + (c_{n}+d_{n})\vec{b}_{n}$$

$$(1) \quad T(\vec{\mathbf{v}}+\vec{\mathbf{x}}) = T(\vec{\mathbf{v}}) \quad \vec{\mathbf{v}} = \vec{\mathbf{v}}_{1}^{-1}\vec{b}_{1} + (c_{2}+d_{2})\vec{b}_{2} + \dots + (c_{n}+d_{n})\vec{b}_{n}$$

$$(1) \quad T(\vec{\mathbf{v}}+\vec{\mathbf{x}}) = T(\vec{\mathbf{v}}) \quad \vec{\mathbf{v}} = \vec{\mathbf{v}}_{1}^{-1}\vec{b}_{1} + (c_{2}+d_{2})\vec{b}_{2} + \dots + (c_{n}+d_{n})\vec{b}_{n}$$

$$(1) \quad T(\vec{\mathbf{v}}+\vec{\mathbf{x}}) = T(\vec{\mathbf{v}}) \quad \vec{\mathbf{v}} = \vec{\mathbf{v}}_{1}^{-1}\vec{b}_{1} + (c_{2}+d_{2})\vec{b}_{2} + \dots + (c_{n}+d_{n})\vec{b}_{n}$$

$$(1) \quad T(\vec{\mathbf{v}}+\vec{\mathbf{x}}) = T(\vec{\mathbf{v}}) \quad \vec{\mathbf{v}} = \vec{\mathbf{v}}_{1}^{-1}\vec{b}_{1} + (c_{2}+d_{2})\vec{b}_{2} + \dots + (c_{n}+d_{n})\vec{b}_{n}$$

$$(1) \quad T(\vec{\mathbf{v}}+\vec{\mathbf{x}}) = T(\vec{\mathbf{v}}) \quad \vec{\mathbf{v}} = \vec{\mathbf{v}}_{1}^{-1}\vec{b}_{1} + (c_{2}+d_{2})\vec{b}_{2} + \dots + (c_{n}+d_{n})\vec{b}_{n}$$

$$(2) \quad T(c\vec{\mathbf{v}}) \quad [c\vec{\mathbf{v}}]_{\beta} = \begin{bmatrix} c_{1}+d_{1}\\ c_{2}+d_{2}\\ c_{n}+d_{n}\end{bmatrix} = c_{1}\vec{\mathbf{v}}_{1} + c_{2}\vec{b}_{2} + \dots + c_{n}\vec{b}_{n}$$

$$T^{-1}\begin{bmatrix} c_{1}\\ c_{2}\\ c_{n}\end{bmatrix} = c_{1}\vec{\mathbf{v}}_{1} + c_{2}\vec{b}_{2} + \dots + c_{n}\vec{b}_{n}$$

'til 12:57 Friday warm-up (Exercise 2 in Tuesday notes)

Exercise 2: Use coordinates with respect to the basis $\{1, t, t^2\}$, to check whether or not the set of polynomials $\{p_1(t), p_2(t), p_3(t)\}$ is a basis for P_2 , where

$$p_{1}(t) = 1 + t^{2} \qquad [p_{1}]_{\beta} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \text{etc.}$$

$$p_{2}(t) = 2 + 3t + t^{2}$$

$$p_{3}(t) = -3t + t^{2}.$$

i.e. check whether the woord vectors in R³ are independent & span R³. Then make conclusions about & pr, p2, p3} $P_2 = 2P_1 - P_3$ $2p_1 - p_2 - p_3 = 0$ $2(1+t^{2}) - (2+pt+t^{2}) - (-pt+t^{2}) = 0!$ how, with coudurectors instead the "old way" $c_{1} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c_{2} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} + c_{3} \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $p_{1}(t) = 2 + 3t + t^{2}$ 1 2 0 0 rref 1 0 2 0 0 3 -3 0 rref 0 1 -1 0 0 0 0 0 0 Theorem : If T: V-W is $c_2 = c_3$ $c_2 = free$ an isomorphism, then $C_3 = 1 : -2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} - 1 \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ {v,,...vp} is (in) dependent in V if and only if $\{T\vec{v}_1, T\vec{v}_2... T\vec{v}_p\}$ are (in)dependent in W proof : $|f - c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p = \vec{O}$ $\text{Hon} \quad \top \left(c_{1} \overrightarrow{v}_{1} + c_{2} \overrightarrow{v}_{2} + \dots + c_{p} \overrightarrow{v}_{p} \right) = \top \left(\overrightarrow{0} \right) = \overrightarrow{0}$ linearity -> 11 $c_1 T(\vec{v}_1) + c_2 T(\vec{v}_2) + \dots + c_p T(\vec{v}_p) = 0$ So, if { ~,... vp} are dependent then { T(v), T(v)... T(vp)} are also dependent, with the same weights apply same reasoning in reverse, by logic i asing T-1, to show that if same fact {TV, TV, ... TV} are dependent in W, then for "independent" {V, V21. Vp} are dependent in V. I

Exercise 3 Generalize the example of Exercise 1: Suppose $\beta = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$ is a non-standard basis of \mathbb{R}^n . And let $E = \{\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n\}$ be the standard basis of \mathbb{R}^n . For $\underline{x} \in \mathbb{R}^n$, how do you convert between $\underline{x} = [\underline{x}]_E$, and $[\underline{x}]_\beta$, and vise-verse?

$$\begin{array}{l} \star \quad \text{if } \quad \vec{x} = [\vec{x}]_{E} = c_{1}\vec{b}_{1} + c_{2}\vec{b}_{2} + \dots + c_{n}\vec{b}_{n} = \begin{bmatrix} \vec{b}_{1} \quad \vec{b}_{2} \cdots \vec{b}_{n} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix} \\ \begin{array}{l} \text{that means } \quad [\vec{x}]_{\beta} = \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix} \\ \\ \begin{array}{l} \star \quad [\vec{x}]_{E} = B \begin{bmatrix} \vec{x} \end{bmatrix}_{\beta} \\ \end{array} \qquad B \text{ is called } P \\ E \in P \\ \begin{array}{l} \text{standard} \\ E \in P \\ \end{array} \\ \begin{array}{l} \star \quad B^{-1} \\ \text{standard} \\ E \in B \\ \end{array} \end{array}$$