
Math 2270-004  Week 8 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  4.2-4.6.   

Mon Feb 26
       4.2 - 4.3  bases for vector spaces and subspaces;  Nul A and Col A;  generalization to linear 
transformations.
     

Announcements: 

Warm-up Exercise:




































































































































Monday Review!  

We've been discussing vector spaces, which are a generalization of n:  Namely, a vector space  is a 
nonempty set V of objects, called vectors, on which are defined two operations, called addition and scalar 
multiplication, so that ten natural axioms about vector addition and scalar multiplication hold (along with 
three additional useful consequences that we often use, and that you thought about on your food for 
thought).

Last week we discovered that certain subsets of vector spaces are also vector spaces (with the same 
addition and scalar multiplication as in the larger space) - namely subspaces of a vector space V: these are 
subsets H of V that satisfy

a)  The zero vector of V is in H
b)  H is closed under vector addition, i.e. for each u H, v H   then u v H. 
c)  H is closed under scalar multiplication, i.e for each u H, c , then also c u H.

We defined linear dependence and linear independence for sets of vectors v1, v2,  ... vp  in a vector space
V.  

A basis for a vector space V is a set of vectors v1, v2,  ... vp  that span V and that is also linearly 
independent.  

The dimension of a vector space V is the number of vectors in any basis for V.  (We'll show why every 
basis for a fixed vector space  V - no matter how weird V may seem - has the same number of vectors, later
this week.) 




































































































































We showed that one way subspaces arise is as H = span v1, v2,  ... vp  for sets of vectors v1, v2,  ... vp  
in a vector space V.  This is an explicit way to describe H because you are saying exactly which vectors are
in it.  If the vectors in the spanning set v1, v2,  ... vp  are not already independent, we illustrated how to 
remove extraneous dependent vectors without shrinking the span, until we were left with a basis for the 
subspace H.  (We'll return to this today .... it was an example with H = Col A)

We discovered that the only subsets of 3 that succeed at being subspaces of 3 are

        0 

        span u }  for some u 0    (a line thru the origin)       1 - dimensional subspaces

        span u, v   for some {u, v  linearly independent          2 - dimensional subspaces

        span u, v, w = 3  for {u, v, w  linearly independent   3 - dimensional (sub)space.

We realized that what happens in 3 with respect to subspaces, generalizes to n.
      

Towards the end of class on Friday we realized that for an m n matrix A, 

Nul A x n for which A x = 0  

is a subspace.  This is an implicit way to specify a subspace, because you're prescribing equations which 
the elements x musts satisfy, but not explicitly saying what the elements are.

Picking up where we left off ....




































































































































Exercise 1a)  For the same matrix A as in Exercise 2 from Wednesday's notes, express the vectors in 
Nul A  explicitly, using the methods of Chapters 1-2.  Notice these are vectors in the domain of the 
associated  linear transformation T : 5  3 given by T x = A x, so are a subspace of 5.

A = 

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7
        reduces to   

1 2 0 1 1

0 0 1 1 1

0 0 0 0 0
 .

1b)  Exhibit a basis for Nul A .




































































































































4.2  Null spaces, column spaces, and linear transformations from n to m.

Definition Let A be an m n matrix, expressed in column form as A = a1 a2 a3 ... an]  The column space 
of A, written as Col A, is the span of the columns:

Col A = span a1 a2 a3 ... an  .

Equivalently, since

A x = x1 a1  x2 a2  ...  xn an 

we see that Col A is also the range of the linear transformation T : n m  given by T x = A x, i.e 

Col A  = b m such that  b = A x for some x n .

Theorem  By the "spans are subspaces" theorem, Col A  is always a subspace of m.  

Exercise 2a)  Consider 

A =

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7
.

By the Theorem, col A  is a subspace of 3.  Which is it:  0 , a line thru the origin, a plane thru the 
origin, or all of 3.  Hint:

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7
        reduces to   

1 2 0 1 1

0 0 1 1 1

0 0 0 0 0
 .

2b)  Is there a more efficient way to express Col A as a span that doesn't require all five column vectors?




































































































































Not all bases are created equal!  

Theorem:  Let  span v1, v2,  ... vp = H  be a subspace.  The following elementary operations do not 
effect the span of the resulting ordered set:

(i)  swap two of the vectors in the set, i.e. replace vj with vk, and replace vk with vj .

(ii)  replace vjwith c vj, for c 0.

(iii)  for j k, replace vk  with vk  c vj .

Exercise 1)  Use the "change of spanning set" theorem above, to find a better basis for Col A  then the one 
we came up with by culling dependent vectors, on Friday.  Hint:  Use elementary column operations to 
compute the reduced column echelon form of A.  Illustrate why this new basis is a better basis for Col A  
by seeing how easy it is to express any one of the original column vectors in terms of this improved basis.

In this example,  A = a1 a2 a3 a4 a5]  and Col A = span a1 , a2 , a3 ,  a4 , a5  

A =

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7
.

As we just reviewed, on Friday we realized that a pretty good basis for Col A is a1 , a3 :  

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7
        row reduces to   

1 2 0 1 1

0 0 1 1 1

0 0 0 0 0
 .




































































































































Now column reduce A to get a basis for Col A that's as good as you could hope for....and show this by 
expressing each of the original columns in terms of this basis.

A =

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7




































































































































general linear transformations.

The ideas of nullspace and column space generalize to arbitrary linear transformations between vectors 
spaces - with slightly more general terminology.

Definition  Let V and W be vector spaces.  A function T : V W is called a linear transformation if for 
each x V there is a unique vector T x W and so that

     (i)   T u v = T u T v      for all u, v V

     (ii)  T c u = c T u      for all u V, c

Definition  The kernel (or nullspace) of T  is defined to be u V :  T u = 0 .

Definition  The range of T is  w W :  w = T v  for some v V  .

Theorem  Let T : V W  be a linear transformation.  Then the kernel of T is a subspace of V.  The range 
of T is a subspace of W.

Remark:  The theorem generalizes our earlier one about Nul A and Col A, for matrix transformations 
T : n m, T x = A x.




































































































































Exercise 2  Let V be the vector space  C1 a, b  of real-valued functions f defined on an interval a, b  with
the property that they are differentiable and that their derivatives are continuous functions on a, b .  Let 
W be the vector space C a, b  of all continous functions on the interval a, b .  Let D : V W be the 
derivative transformation

D f = f  .

2a)  What Calculus differentiation rules tell you that D is a linear transformation?

2b)  What  subspace is the kernel of D ?

2c)  What is the range of D ?




































































































































Tues Feb 27
          4.4  Coordinate systems for finite dimensional vector spaces

Announcements: 

Warm-up Exercise:




































































































































Theorem  Let V be a vector space, and let b1, b2,  ... bp  be a basis for V.  Then for each v V there is a 
unique set of scalars c1, c2, ... cp so that

v = c1b1 c2b2  ... cpbp.
proof:



Definition  (Each basis gives us a coordinate system).  Let V be a vector space, and let = b1, b2,  ... bp  

be a basis for V.  For each v V we say that the coordinates of v with respect to  are c1, c2, ... cp if 

v = c1b1 c2b2  ... cpbp.  

And, we write the vector of the coordinates of v with respect to  as:

v  = 

c1

c2

:

cp

p .

Example:  For the vector space 
P

3
= p t = a0 a1 t a2 t2  a3 t3 such that a0, a1, a2 , a3

we've checked that
=  1, t, t2, t3 

is a basis.  So the coordinate vector of
p t = 3 4 t2  t3

with respect to  is

p  = 

3

0

4

1



And, if  q  P
3
, with 

q  = 

2

1

7

0
then

q t = 2 t 7 t2.

It turns out that we can understand pretty much any vector space question about P
3
 by interpreting the 

question in terms of the coordinates with respect to , which lets us work in 4 in lieu of P
3
 .  That's what 

coordinates with respect to a basis are good for, when you're working with a non-standard vector space.



Exercise 1)  Let  

=
1

1
 , 

1

3
= u, v

be a non-standard basis of 2.   

1a)  Suppose x is a vector in 2, and 

x  = 
2

1
.

Find the standard coordinates for x, i.e. its coordinates with respect to the standard basis E = e1, e2 .

1b)  Find the coordinates for the vector b =
2

8
.  (The math may seem familiar.)

1c)  Interpret your work in 1ab geometrically, in terms of the coordinate system generated by .
 



Theorem  Let V, W be vector spaces, and T : V W a linear transformation.  If T is 1 1 and onto, then 
the inverse function T 1 is also a linear transformation, T 1 : W V.  In this case, we call T an
isomorphism.

proof:   We have to check that for all u, w W and all c ,

T 1 u w = T 1 u T 1 w

T 1 c u = c T 1 u .

Theorem  Let V be a vector space, with basis = b1, b2,  ... bn .  Then the coordinate transform 
T : V n defined by

T v = v

is linear, and it is an isomorphism.  



Exercise 2:  Use coordinates with respect to the basis 1, t, t2 , to check whether or not the set of 
polynomials p1 t , p2 t , p3 t  is a basis for P

2
, where

p1 t = 1 t2 

p2 t = 2 3 t  t2

p3 t = 3 t t2 .



Exercise 3  Generalize the example of Exercise 1:  Suppose = b1, b2,  ... bn  is a non-standard basis of 
n.  And let E = e1, e2,  ... en  be the standard basis of n.  For x n, how do you convert between x

= x E , and x , and vise-verse?



Wed Feb 28
          4.5  dimension of a vector space, and related facts about span and linear independence.

Announcements: 

Warm-up Exercise:



There is a circle of ideas related to linear independence, span, and bases for vector spaces, which it is good 
to try and understand carefully.  That's what we'll do today.  These ideas generalize (and use) ideas we've 
already explored more concretely, and facts we already know to be true for the vector spaces n.  

Theorem 1  (constructing a basis from a spanning set):  Let V be a vector space of dimension at least one, 
and let  span v1, v2,  ... vp = V.  
Then a subset of the spanning set is a basis for V.   (We followed a procedure like this to extract bases for 
Col A.)

Theorem 2  Let V be a vector space, with basis = b1, b2,  ... bn .  Then any set in V containing more 
than n elements must be linearly dependent. (We used reduced row echelon form to understand this in n.)



Theorem 3  Let V be a vector space, with basis = b1, b2,  ... bn .  Let  = a1, a2,  ... ap  be a set of 

independent vectors that don't span V.  Then p n, and additional vectors can be added to the set  to 
create a basis  a1, a2,  ... ap, ... an   (We followed a procedure like this when we figured out all the 
subspaces of 3.)

Theorem 4  Let V be a vector space, with basis = b1, b2,  ... bn .  Then no set  = a1, a2,  ... ap  with 
p n vectors can span V.  (We know this for n.)  



Theorem 5  Let Let V be a vector space, with basis = b1, b2,  ... bn .  Then every basis for V has exactly

n vectors.  Furthermore, if  = a1, a2,  ... an  is another collection of exactly  n vectors in V, and if  

span a1, a2,  ... an = V, then the set  is automatically linearly independent and a basis.  Conversely, if 

the set a1, a2,  ... an  is linearly independent, then span a1, a2,  ... an = V is guaranteed, and  is a 
basis.  (We know all these facts for n from reduced row echelon form considerations.)

Corollary   Let Let V be a vector space of dimension n.  Then the subspaces of V have dimensions 
0, 1, 2,...n 1, n.  (We know this for n.)



Fri Mar 2
         4.6  The four subspaces associated with a matrix.  the rank of a matrix.

Announcements: 

Warm-up Exercise:



Theorem  Let V, W be vector spaces, and T : V W a linear transformation.  If T is 1 1 and onto, then 
the inverse function T 1 is also a linear transformation, T 1 : W V.  In this case, we call T an
isomorphism.

proof:   We have to check that for all u, w W and all c ,

T 1 u w = T 1 u T 1 w

T 1 c u = c T 1 u .

Theorem  Let V be a vector space, with basis = b1, b2,  ... bn .  Then the coordinate transform 
T : V n defined by

T v = v

is linear, and it is an isomorphism.  



Exercise 2:  Use coordinates with respect to the basis 1, t, t2 , to check whether or not the set of 
polynomials p1 t , p2 t , p3 t  is a basis for P

2
, where

p1 t = 1 t2 

p2 t = 2 3 t  t2

p3 t = 3 t t2 .



Exercise 3  Generalize the example of Exercise 1:  Suppose = b1, b2,  ... bn  is a non-standard basis of 
n.  And let E = e1, e2,  ... en  be the standard basis of n.  For x n, how do you convert between x

= x E , and x , and vise-verse?


