Math 2270-004 Week 8 notes
We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material in 4.2-4.6.

Mon Feb 26
« 4.2 -4.3 bases for vector spaces and subspaces; Nul A and Col A; generalization to linear
transformations.
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Monday Review!

We've been discussing vecior spaces, which are a generalization of R": Namely, a vector space is a
nonempty set V' of objects, called vectors, on which are defined two operations, called addition and scalar
multiplication, so that ten natural axioms about vector addition and scalar multiplication hold (along with
three additional useful consequences that we often use, and that you thought about on your food for
thought).

Last week we discovered that certain subsets of vector spaces are also vector spaces (with the same
addition and scalar multiplication as in the larger space) - namely subspaces of a vector space V: these are

subsets H of V that satisfy sab e c.«"n\ ST«U-& .

a) The zero vector of V'is in H
b) H is closed under vector addition, i.e. foreachu € H,y € H thenu +y € H.
¢) H is closed under scalar multiplication, i.e foreachu € H, c € R, then also cu € H.

We defined /linear dependence and linear independence for sets of vectors { Y,¥, ..V } in a vector space
P
V.
A basis for a vector space V'is a set of vectors { Y,Y), ¥ } that span V and that is also linearly
= ke
independent.
R——

The dimension of a vector space V is the number of vectors in any basis for V. (We'll show why every
basis for a fixed vector space V- no matter how weird /' may seem - has the same number of vectors, later
this week.)



We showed that one way subspaces arise is as H = span { Y,¥y, ..V } for sets of vectors {v y

=1 22’ e =p }
in a vector space V. This is an explicit way to describe H because you are saying exactly which vectors are

in it. If the vectors in the spanning set { V¥ b } are not already independent, we illustrated how to

remove extraneous dependent vectors without shrinking the span, until we were left with a basis for the
subspace H. (We'll return to this today .... it was an example with H = Col A)

We discovered that the only subsets of R3 that succeed at being subspaces of R3 are
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We realized that what happens in R3 with respect to subspaces, generalizes to R”. PRV S
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Towards the end of class on Friday we realized that for an m x n matrix 4,
Nul4 = {x € R" forwhich4x=0}

is a subspace. This is an_implicit way to specify a subspace, because you're prescribing equations which
the elements x musts satisfy, but not explicitly saying what the elements are.

Picking up where we left off ....
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ise 1a) For the same matrix 4 as in Exercise 2 from Wednesday's notes, express the vectors in
Nul (A )| explicitly, using the methods of Chapters 1-2. Notice these are vectors in the domain of the
associated linear transformation 7: RS — [R3 given by T(x) = 4 x, so are a subspace of [R3.
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4.2 Null spaces, column spaces, and linear transformations from R” to R™.

Definition Let 4 be an m x n matrix, expressed in column form as 4 = [ a,a,4,..4a ] The column space
of A, written as Col A4, is the span of the columns:

ColA= Spcm{g1 4,4, .. gn} .

Equivalently, since

Ax=x1g1 —I—ngz + .. —I—x”gn

we see that Col 4 is also the range of the linear transformation 7" : R* —»[R” given by T'(x) =4 x, 1.
ColA = {b € R" such that b= A x for some x € R"}.

Theorem By the "spans are subspaces" theorem, Col(A4) is always a subspace of R.

Exercise 2a) Consider
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2b) Is there a more efficient way to express Col A)as a span that doesn't require all five column vectors?
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Not all bases are created equal!

Theorem: Let span {21’ Yy, ¥

effect the span of the resulting ordered set:

} = H be a subspace. The following elementary operations do not

(1) swap two of the vectors in the set, i.e. replacezj with y,, and replace v, with Y.
) p— - ) -
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Exercise 1) Use the "change of spanning set" theorem above, to find a better basis for Co/ A then the one
we came up with by culling dependent vectors, on Friday. Hint: Use elementary column operations to
compute the reduced column echelon form of 4. Illustrate why this new basis is a better basis for Co/ 4
by seeing how easy it is to express any one of the original column vectors in terms of this improved basis.

Inthisexample,AZ[gngg3g4gs] andColAzspan{gl,gQ,gs,g4,g5} — gro\.\ 'a",a’
1 -2 0 -1 1
A=1| -2 4 0 2 -2
3 -64 1 7

As we just reviewed, on Friday we realized that a pretty good basis for Col 4 is{g, , 4, }:
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Now column reduce A4 to get a basis for Col 4 that's as good as you could hope for....and show this by
expressing each of the original columns in terms of this basis, o
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general linear transformations.

The ideas of nullspace and column space generalize to arbitrary linear transformations between vectors
spaces - with slightly more general terminology.

Definition Let /" and W be vector spaces. A function 7 : V— W is called a linear transformation if for
each x € Vthere is a unique vector 7(x) € W and so that

"~
() T(w+p)=T(w) +T(y) foralluyeV TR'-R
l\.kl.ov\
(1) T(cu)=cT(uw) forallueV,ceR Lot cu{
(we shawed TGE)= AR 7
Definition The kernel (or nullspace) of T is definedtobe {u € V': T(u) =0}. Nu\l A
Definition The rangeof T'is {w € W: w=T(») for somey € V}. C_ol A

Theorem Let 7: V— W be a linear transformation. Then the kernel of T is a subspace of V. The range
of T is a subspace of W.
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Exercise 2 Let V'be the vector space C : [a, b] of real-valued functions f'defined on an interval [a, b ] with
the property that they are differentiable and that their derivatives are continuous functions on [a, b]. Let

W be the vector space C[a, b] of all continous functions on the interval [a, b]. LetD : V'— W be the
derivative transformation £0a eg,(
x|~

D)= D)= 3 e™

2a) What Calulus differentiation rules tell you that D is a linear transformation?  — (=, oy =T(2) + T®)
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4.4 Coordinate systems for finite dimensional vector spaces
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Theorem Let V'be a vector space, and let {Ll, 22, Lp }

unique set of scalars Cps Cps e €, SO that
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proof: S"‘P(w&e

N wuﬂokolso w\r(.l-e T/':All;)l+vLCl4--- + J\P EP

Su\ﬁ‘{'rc.cjr Ez

—
+ro. E, OCC";),+(J;,—|—~—+

(av\A use vtedm )
SVAUL
O Xn'0nn g

Covvmin 'k o\'{\' v
219)) Q'kfk\‘\n

be a basis for V. Then for each y € Vthereis a

€,
E.

< bl’ - (dntﬁ o{jﬁ---\dfﬂr)
= (C\T;\ ’0‘1131} + (Cz‘[‘:z” Az-gz.) L.+ (.CPE;"JY.L’?)

O = (e-d0 b + (o tdb, + = ¥ (gD by

E,Lcow\% {I:HCL’ - c[,ﬁ} N O iwla[).

Lo ¢
3

C

v

d

—~
.

.

-

i.e. eech citd ’

g
i



—1’ —2, A

Definition (Each basis gives us a coordinate system). Let V' be a vector space, and let B = { b

be a basis for V. For each y € V we say that the coordinates of v with respect to [ are ¢

12 €y €, if

y= clgl + CZQQ + ...+ cpﬁp.

And, we write the vector of the coordinates of ¥ with respect to [3 as:

<
c
[1_)]B= :2 e Rr.
/ C
L p 4

Example: For the vector space

P3={p( )—a ta t+a, s + a, r suchthata al,az,a3E[R}

we've checked that
B={1,77}
is a basis. So the coordinate vector of
p(t) {Q— 47 +7 ¢
0t

with respect to B is

b
b,

}



And, if ¢ € P3, with

[q]5=

then
g(1)=-2+1+77.

It turns out that we can understand pretty much any vector space question about P3 by interpreting the

question in terms of the coordinates with respect to B, which lets us work in R?* in lieu of P3 . That's what

Mates with respect to a basis are good for, when you're working with a non-standard vector space.




Exercise 1) Let P
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1b) Find the B -coordinates for the vector b = . (The math may seem familiar.)
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Theorem Let V, W be vector spaces, and 7 : V— W a linear transformation. If 7is 1 — 1 and onto, then

the inverse function 7™ is also a linear transformation, 7’ L WSV, In this case, we call 7 an
isomorphism.

proof: We have to check that forallu, w € Wandallc € R,

= Tt w) =T () + 77 ()
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Theorem Let 7 be a vector space, with basis 3 = { b.b, ..b } Then the coordinate transform

T : V— R" defined by
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Exercise 2: Use coordinates with respect to the basis { 1, ¢ £ }, to check whether or not the set of
polynomials {pl (2),p, (1), P4(1) } is a basis for Pz’ where
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Exercise 3 Generalize the example of Exercise 1: Suppose 3 = Lkl’ b, ..b, } is a non-standard basis of
Rr. Andlet E= {gl, g, - e‘} be the standard basis of R?. For x € R”, how do you convert between x
sl n

= [x],,and [x]ﬁ, and vise-verse?
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4.5 dimension of a vector space, and related facts about span and linear independence.
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There is a circle of ideas related to linear independence, span, and bases for vector spaces, which it is good
to try and understand carefully. That's what we'll do today. These ideas generalize (and use) ideas we've
already explored more concretely, and facts we already know to be true for the vector spaces R”.

Theorem 1 (constructing a basis from a spanning set): Let V" be a vector space of dimension at least one,

and let span{zl,yg, ...zp} =V

Then a subset of the spanning set is a basis for V. (We followed a procedure like this to extract bases for
Col A.)

—1 b —2 b
than n elements must be linearly dependent. (We used reduced row echelon form to understand this in [R”.)

Theorem 2 Let V' be a vector space, with basis § = {b b, ..b } Then any set in V' containing more



TheoreﬁrLet V' be a vector space, with basis B = {QI,QQ, ...Qn } Leto = {gl,gz, ...gp} be a set of

independent vectors that don't span V. Then p < n, and additional vectors can be added to the set o to

create a basis { 4,84y .4,..4a } (We followed a procedure like this when we figured out all the

subspaces of R3.)

Theoremg Let V' be a vector space, with basis = {Ql,

22, Qn} Then no set o0 = {QI,QQ, ...gp}with
p < nvectors can span V. (We know this for R”.)



Theorem 5 Let Let 7 be a vector space, with basis = {Ql, b, ..b } Then every basis for /' has exactly
n vectors. Furthermore, ifol = { 4,4, .4 } is another collection of exactly » vectors in V, and if

span { a,.4,, .. gn} =V, then the set o is automatically linearly independent and a basis. Conversely, if
the set {gl, a,, ..
basis. (We know all these facts for R” from reduced row echelon form considerations.)

a, } is linearly independent, then span { 4,4, .4, } = Vis guaranteed, and o is a

Corollary Let Let V' be a vector space of dimension n. Then the subspaces of J have dimensions
0,1,2,..n—1,n (Weknow this for R”.)
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Theorem Let V, W be vector spaces, and 7 : V— W a linear transformation. If 7is 1 — 1 and onto, then

the inverse function 7™ is also a linear transformation, 7’ L WSV, In this case, we call 7 an
isomorphism.

proof: We have to check that forallu, w € Wandallc € R,

= Tt w) =T () + 77 ()
_1 _ _1
Sind | 75 |- I (cu)=cT (u).

T I\NM

T s 2HS T (7@ + T = T @ + T(T)
T g LAG T (77 (@9

T is Wvaon

—_—

scdar | T(T"(m}éd

el P\\LA‘I’\M

Theorem Let 7 be a vector space, with basis 3 = { b.b, ..b } Then the coordinate transform

T : V—R" defined by

5 (<,
+ C-,_‘E:, 4---* Cv\"’h Se G][s = 1%

(+4) b # lqad)b 4+ GoeddD, ()= (9

Oy TER= -rcﬂ@_a [Vm - c;?«iz a.[c]‘gthp

e +d,

- A
T e, B, s cc,_l;)-t-.- (2 T'(:\:T({j)

"y 5. .
c.v-Q(C\E)\“%T:VL"*C ) [cv] [c_c\ :‘—[V]{;

T kaew TR =V

-1 1 -~ =) -
T [91 = Vit ui-te V.
én,

cen
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Exercise 2: Use coordinates with respect to the basis { 1, ¢ £ }, to check whether or not the set of
polynomials {pl (2),p, (1), P4(1) } is a basis for Pz’ where

_ [
p(t)=1+7¢ [(ﬂp- [o] 2 te.
py()=2+3t+7 '

p3(t)=_3t+f2.
e, check wL\J.‘Hd'\.

He woovd W Fors o (R a8 lv\ch[w-&%" & s‘;q.,‘ lR Tlow wmake
wdu%aks abont {'F“F" r.s}
F"— - 2?(— fs
29, -

> (\+ 29 - m /) (s p) =0

L\d\'\r M“‘H« ma\ﬂt""ﬂfs W\S\-(.G-.o( 'H\Q “Olo( et I
1

ORI

AGE \[zm=7— R

NEXETIEH
\izo.__"eg :,53?3'3
(0] - 0
L v o1t \o 00 61lo
¢, = -2¢,
M y lg’ T‘V——)\[\l It (cllcim
an (SOMV‘PL\AS\»—— , Hae 3

R LA
CG Q\AA n«la [ ! 1

{n,,-rvl...w?\ ane (i) deprdand i W

w{: : 4( v v +LTI> = 8
\ CUHGY, k- &Y )
Mo T (eTagHha-te¥) = T(0)=
hmla — M o
¢, T(E) +oTEH)+ - ¢ (@)= 0

So, if §T0- T are depdond Hoane { T, TE) - T ae

vea alse da Komf\/ .
[7\, lv:x\c A'PPJ Sawe r'easwm,j N TRverLR, '-ILSQW?ZMWAH_S
Sane ‘F&C‘\' °\§|5 _I'" ) SLvh—r ‘HAA‘(‘ }
"l."“- s la(mwh,;lh iLTV“ VL lVE MAJ_PJA&,W‘— u.\\/\} Hoo

V\; - VPB o~e &(m.du:l"‘k\/ |



Exercise 3 Generalize the example of Exercise 1: Suppose 3 = Lkl’ b, ..b, } is a non-standard basis of
Rr. Andlet E= {gl, g, - e‘} be the standard basis of R?. For x € R”, how do you convert between x
e n

= [x],,and [x]ﬁ, and vise-verse?

X ;,I[ X :[;,(]E - Ct]‘:n“ztx bt CJ)J"‘ - {L" ];l " E‘] F(

Hnat wtans ["i‘_\‘s: -

9

Cn

N CA P B [ﬂp B i called

e<f

X% [?;'[;]E = R s callh (ﬁ_e



